Digital Twinning of a Drilling Rig

Calgary Geothermal and UNWASTE Workshop

Shanti Swaroop Kandala, Roman J. Shor Geothermal Energy Lab University of Calgary

Alex Vetsak Eavor Technologies, Inc

May 18, 2022

Background & Motivation

- Drillstring dynamics
- Challenge
 - Occurrence of unwanted vibrations

- Realtime data/performance analysis
- Digital model of a physical system
 - To better understand and optimize

Background & Motivation

- Model Field validated distributed model
 - Aarsnes (2016, 2018)
- Captures higher modes
- Model 1–D wave equation with a soft-sensor
- Soft sensor advantage
 - Uses topside measurements
- Estimates
 - Kinematic and static friction coefficients
 - Angular velocity, torque

Mathematical Model

Off-Bottom Dynamics

$$\frac{\partial \tau(t,x)}{\partial t} + JG \frac{\partial \omega(t,x)}{\partial x} = 0$$

Bit-rock Interaction

$$\tau_b = \alpha_1 * DOC + \alpha_2 * WOB$$

DOC – Depth-of-cut

WOB – Weight-on-bit

Results and Discussion

- Web-based application PyRoDrill
- Built using widgets
 - Instructions
 - Import column X store as Parameter 1 Convert to SI units
- CSV data, data can be read from the database
- Output Display using interactive graphs

Evolution of Drilling Parameters

Evolution of Drilling Parameters

Evolution of Drilling Parameters

Evolution of α_1 (DOC) and α_2 (WOB)

Future Work

- Include the hydraulics
- Underlying parameters in $lpha_1$ and $lpha_2$
- Physics-based models for bit-torque
- Coupled axial and torsional drillstring dynamics.

Conclusions

- Proposed an integrated digital twin model
- Bit-torque as function of weight-on-bit and the depth-of-cut.
- Evolution of α_1 and α_2
 - Bit wear and/or damage
 - Formation change
- Insights Downhole conditions
- Absence of the hydraulics model
 - Multiple solutions for the bit-rock interaction parameters.
- Bit-rock interaction parameters
 - Monitoring and optimizing

Acknowledgements

- Willem Jordaan and Ariel Torre, for extensive feedback sessions and ideas
- National Science and Engineering Research Council (NSERC) of Canada for their funding of the Alliance Project #561118-20
- Alberta Innovates of their funding of Campus Alberta Small Business Engagement Grant #212200496
- Eavor Technologies for their financial support

Questions?

Shanti Swaroop Kandala
Postdoctoral Associate
shantiswaroop.kandal@ucalgary.ca

