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Abstract: Forest fire is one of the major natural hazards/disasters in Canada and many ecosystems
across the world. Here, our objective was to enhance the performance of an existing solely remote
sensing-based forest fire danger forecasting system (FFDFS), and its implementation over the
northern region of the Canadian province of Alberta. The modified FFDFS was comprised of
Moderate Resolution Imaging Spectroradiometer (MODIS)-derived daily surface temperature (Ts)
and precipitable water (PW), and 8-day composite of normalized difference vegetation index (NDVI)
and normalized difference water index (NDWI), where we assumed that cloud-contaminant pixels
would reduce the risk of fire occurrences. In addition, we generated ignition cause-specific static
fire danger (SFD) maps derived using the historical human- and lightning-caused fires during the
period 1961–2014. Upon incorporating different combinations of the generated SFD maps with the
modified FFDFS, we evaluated their performances against actual fire spots during the 2009–2011
fire seasons. Our findings revealed that our proposed modifications were quite effective and the
modified FFDFS captured almost the same amount of fires as the original FFDFS, i.e., about 77%
of the detected fires on an average in the top three fire danger classes of extremely high, very high,
and high categories, where about 50% of the study area fell under low and moderate danger classes.
Additionally, we observed that the combination of modified FFDFS and human-caused SFD map
(road buffer) demonstrated the most effective results in fire detection, i.e., 82% of detected fires on
an average in the top three fire danger classes, where about 46% of the study area fell under the
moderate and low danger categories. We believe that our developments would be helpful to manage
the forest fire in order to reduce its overall impact.

Keywords: human-caused static fire danger map; lightning-caused static fire danger map;
normalized difference vegetation index; normalized difference water index; precipitable water;
surface temperature

1. Introduction

Forest fires are an integral part of ecosystems across the globe, including those in the Canadian
boreal region. In general, forest fires are perceived negatively for several reasons, such as: (i) loss of
forestry revenues [1]; (ii) expedition of global warming through releasing of carbon dioxide into
the atmosphere [2]; (iii) destruction of neighborhoods, critical infrastructure, and biodiversity [3];
and (iv) increase in respiratory diseases though deteriorating air quality [4], etc. At the same time,
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there are some positive aspects including reviving healthy trees, extinguishing pests and diseases,
and providing nutrients for better regeneration. In order to quantify the balance between negative
and positive impacts, it is extremely important to have an efficient system to manage forest fires.
In this context, one of the critical steps to understanding the pre-fire conditions is the need of
formulating a forest fire danger forecasting system, which would be possible by using remote
sensing-based approaches.

In recent decades, researchers have used satellite-based remote sensing approaches to study
fire danger conditions as remote sensors can acquire data continuously even in the remote areas of
the landscape. In general, we can divide the remote sensing-based approaches broadly into two
categories, such as monitoring systems that determine the fire danger conditions during and/or
after fire occurrences [5–7]; and forecasting systems that predict the fire danger conditions before
fire occurrences [1,8,9]. In fact, the forecasting systems should be studied more extensively as the
monitoring systems are not useful for the operational forest fire management purposes [10]. Some of
the key studies are summarized as follows:

• Preisler et al. [11] employed the AVHRR-derived relative greenness (RG) and normalized
difference vegetation index (NDVI) in calculating fire potential index (FPI) to determine the
weekly distributions of three fire-related components (i.e., the total number of fires, total fires
with a specific size, and probability of those fires which have a certain size) over the continental
United States during the period 1985–2005. In determining the probability, they used two types
of FPI values (i.e., FPI10 and FPI1000 obtained from 10-h and 1000-h time lag fuel moisture,
respectively). Upon generating the probabilities, they compared the forecasted number of large
fires and observed ones. The result showed that both FPI10 and FPI1000 could predict large fires.

• Bisquert et al. [12] used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 16-day
enhanced vegetation index (EVI) at 250 m spatial resolution, and daily surface temperature (Ts) at
1 km spatial resolution to predict fire danger condition over the Galicia region, Spain during the
period 2001–2006. They evaluated different combinations of input variables (e.g., difference
between two 16-day images for EVI; average and maximum 2 to 16-day composites, and
differences between two Ts images in the same composite period, and so on) along with fire
history and period of year using logistic regression and artificial neural networks. They found the
best predictor (i.e., combination of 8-day Ts images, fire history in each cell, and period of year)
was able to classify 65% of the observed fires in the high fire danger class.

• Chowdhury and Hassan [8] employed MODIS-derived products, such as 8-day composites of Ts
at 1 km, NDVI and normalized multiband drought index (NMDI) at 500 m, and daily precipitable
water (PW) at 1 km resolution to develop a Forest Fire Danger Forecasting System (FFDFS).
They forecasted the fire danger conditions at daily scale over the forest areas in Alberta during
2009–2011 in five fire danger classes (i.e., low, moderate, high, very high, and extremely high), and
demonstrated that ~77.39% of the fire events fell into the high to extremely high categories. Note
that this study was based on the earlier research conducted in the Earth Observation Laboratory at
The University of Calgary, and was focused on forecasting fire dangers at 8-day time-scale [1,13].

• Li et al. [14] studied MODIS-derived 16-day composites of RG and vegetation danger index (VDI)
at a 250 m spatial resolution in conjunction with historical fire events in order to determine fire
danger conditions over Northern China for the period 2008–2011. They compared RG and VDI
values for fire spot locations at three times: (i) before the fire (2008 and 2009); (ii) during the fire
events (2010); and (iii) after fire occurrence (2011). They showed that RG values were more than
70% at the fire spot locations before the fire occurring, and VDI values were positive.

• Liu et al. [15] used: (i) MODIS-derived 8-day Ts and surface reflectance data; (ii) Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived digital elevation
model (DEM) at 30 m spatial resolution; and (iii) historical lightning-caused fire data to generate
the potential fire risk at a 0.5◦ × 0.5◦ spatial resolution over a mountainous area in China during
the period 2000–2006. They produced five fire risk classes (i.e., low to extremely high); and found
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that ~68.8% of the historical fires fell under the three fire risk classes (i.e., relatively high, high,
and extremely high).

• Arganaraz et al. [16] employed MODIS-derived 8-day vegetation and canopy water
content-related indices (e.g., NDVI, EVI, and normalized difference water index (NDWI), etc.) to
estimate live fuel moisture content (LFMC) and, subsequently, to predict fire danger conditions
within different land cover classes in the forest area of Gran Chaco in Argentina during three fire
seasons (i.e., 2003, 2012, and 2013). Then, they classified the modeled LFMC values into four fire
danger classes (i.e., low, moderate, high, and extremely high) at a monthly scale, and observed
that ~60% of the burn pixels contained high and extremely high danger classes.

• Yu et al. [17] used: (i) MODIS-derived 8-day Ts at 1 km, surface reflectance at 500 m, and fire
mask at 1 km data; (ii) Shuttle Radar Topography Mission (SRTM)-derived DEM at 30 m; and (iii)
Tropical Rainfall Measuring Mission (TRMM)-derived 8-day accumulated precipitation data at
0.25◦ × 0.25◦, to forecast fire risk at a 8-day scale in Cambodia. They reported that the predicted
risk in comparison to the MODIS-derived fire spots had good agreement (i.e., r2 ≈ 0.987).

In general, most of the above-mentioned systems had either coarse spatial or temporal resolutions.
In contrast, Chowdhury and Hassan’s proposed method had not only demonstrated its ability to
forecast danger conditions at daily time-scales with 500 m spatial resolution, but also over Canadian
boreal forested regions. Despite this, it had several issues, such as: (i) only one variable (i.e., PW) was
available on a daily time-scale; (ii) it applied a gap-filling algorithm [13] to infill the cloud-contaminant
pixels that was not only time consuming, but also unable to eliminate all the cloudy pixels; and (iii) it
did not incorporate the source of ignition, including lightning- and human-caused fires, in the makeup
of the system. In order to address these issues, our objectives were three-fold. Firstly, we exploited
historical fire occurrences caused by both lightning and human activities in order to generate
cause-specific static fire danger (SFD) maps. Secondly, we opted to enhance the legerity of the
existing system (i.e., FFDFS) described in our earlier studies [1,8,13] by: (a) employing a daily-scale Ts;
(b) removing the gap-filling algorithm upon the assumption that the cloud-contaminant pixels would
exhibit low fire danger conditions; and (c) replacing the NMDI using NDWI, as this would be simpler
to compute. Finally, we combined the remote sensing-based danger conditions (as outlined in the first
step) with the two SFD maps, and evaluated their overall achievements.

2. Materials

2.1. Study Area

Our study area is located between 52–60◦N latitudes and 110–120◦W longitudes in the northern
part of the Canadian province of Alberta (see Figure 1). Since our goal was to forecast fire danger in the
forest areas, we focused on four different forest land cover types mentioned in Table 1. The elevation
in this area varies between 162 and 3596 m above mean sea level, and the mean annual temperature
and precipitation vary from −3.6 to 1.1 ◦C, and between 377–535 mm, respectively. Thus, the area is
known for short summers, and long and cold winters in the area [18].

2.2. Data Requirement

In this study, we employed three datasets including four different products from Terra MODIS,
54-years of fire occurrence data (see Figure 2), and two geographic information system (GIS) layers
(roads and natural subregions; Table 1). Of the natural subregions we selected 17 natural subregions in
generating the fire ignition source SFD maps. The reason we chose these subregions was that they had
experienced at least one fire during the period 1961–2014 (Figure 1).
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one fire occurrence during the period of interest. 

Table 1. Description of the employed datasets in the scope of this study. 

Source Period Description Purpose 
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Utilized in validating the lightning-caused 
SFD map 

1961–2014 
Historical human-caused fire dataset 
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Employed in validating the human-caused 
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2009–2011 
Historical fire dataset with the fire sizes ≥ 1 
hectares, consisting of 2772 fire spots within 
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km spatial resolution 

8-day composite of surface reflectance (i.e., 
MOD09A1) at 500 m spatial resolution 

Utilized in calculating NDWI and NDVI, 
and subsequently employed as input into 
the model 

2008 
Annual land cover map (i.e., MCD12Q1) at 
500 m spatial resolution 

Used in extracting the intended four forest 
land cover types, i.e., (i) deciduous 
broadleaf forest; (ii) evergreen broadleaf 
forest; (iii) evergreen needleleaf forest; and 
(iv) deciduous needleleaf forest 

Government of Alberta 
2006 Alberta natural subregions as GIS layer 

Employed in generating the SFD maps 
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Figure 1. Map illustrating the location of the study area, and fire frequency (percentage of lightning-
and human-caused in parenthesis, respectively) in all 21 natural subregions during the period of
1961–2014 in Alberta, Canada. The asterisk marks denote the subregions where we observed at least
one fire occurrence during the period of interest.

Table 1. Description of the employed datasets in the scope of this study.

Source Period Description Purpose

Alberta Forest Service

1961–2000 Historical lightning-caused fire dataset
consisting of 16087 no. fires

Used as calibration dataset in
generating the lightning-caused
SFD map

2001–2014 Historical lightning-caused fire dataset
consisting of 7888 no. fires

Utilized in validating the
lightning-caused SFD map

1961–2014 Historical human-caused fire dataset
consisting of 26776 no. fires

Employed in validating the
human-caused the SFD map

2009–2011
Historical fire dataset with the fire sizes ≥ 1
hectares, consisting of 2772 fire spots within
four forest land cover types of interest

Employed in evaluating the
generated daily fire danger maps

Moderate Resolution Imaging
Spectroradiometer (MODIS)

2009–2011

Daily surface temperature (i.e., MOD11A1)
at 1 km spatial resolution

Used as an input into the model
Daily precipitable water (i.e., MOD05L2) at
1 km spatial resolution

8-day composite of surface reflectance (i.e.,
MOD09A1) at 500 m spatial resolution

Utilized in calculating NDWI and
NDVI, and subsequently employed
as input into the model

2008 Annual land cover map (i.e., MCD12Q1) at
500 m spatial resolution

Used in extracting the intended four
forest land cover types, i.e.,
(i) deciduous broadleaf forest;
(ii) evergreen broadleaf forest;
(iii) evergreen needleleaf forest; and
(iv) deciduous needleleaf forest

Government of Alberta
2006 Alberta natural subregions as GIS layer Employed in generating the

SFD maps2000 Alberta road network as GIS layer
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Figure 2. Frequency distribution of the (a) lightning- and (b) human-caused fire occurrences in
17 natural subregions of Alberta from 1961–2014.

3. Methods

Our proposed method included three major components (Figure 3) including: (i) generating of
fire ignition source-based SFD maps; (ii) enhancing the performance of FFDFS; and (iii) incorporating
SFD maps with enhanced FFDFS and validations.
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Figure 3. Schematic diagram of the enhanced forest fire danger forecasting system.

3.1. Generating of Fire Ignition Source-Based SFD Maps

In general, people use road networks to visit parks, campgrounds, and other recreation facilities,
and also to commute to the municipalities and industrial zones located within forested regions;
as such, the chance of forest fire occurrences increases in the vicinity of the roads network [19–21].
Thus, we created a 500 m buffer zone on both sides of the roads located within four forest land cover
types (Table 1). We then produced a human-caused SFD map with two classes, a high danger class
inside the buffer zone, and a low danger class outside the buffer zone.

In studying the spatio-temporal patterns of lightning-caused fire incidents, Krawchuk et al. [22]
divided Alberta’s central-eastern landscape into 10 km2 cells for the period 1983–1993. We used a cell
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size with an area of 9 km2 for 1961–2000 within forested areas of Alberta. We hypothesized that the
lightning-caused fires might follow a specific spatial distribution pattern over a long period of time
which might be used as a base to generate a SFD map. To do so, we took the following four steps: (i) we
created a mesh layer based on MODIS grid line at 500 m spatial resolution; (ii) we merged the adjacent
pixels in this mesh layer in order to generate a mesh layer with equivalent 9 km2 (i.e., 6 × 6 pixels
or 3 km spatial resolution) area per pixel; (iii) we masked the generated mesh layers using four
forest land cover types in Alberta; and (iv) finally, we overlaid the lightning-caused fire spots during
the period 1961–2000 over the generated mesh layer in order to create a SFD map; which had two
classes, i.e., (i) high danger classes where at least one fire happened during the period 1961–2000;
and (ii) low danger classes where no fire happened over the same time period.

3.2. Enhancing the Performance of FFDFS and Their Validations

Upon implementing the proposed modifications on FFDFS, we generated daily fire danger maps
based on the existing framework described in Chowdhury and Hassan [8] (Figure 4). In this process,
we clipped the model inputs (i.e., 8-day composites of surface reflectance, daily Ts and PW) within the
forested areas described in Table 1. Then, using surface reflectance data during the 8-day period (j),
we calculated 8-day composites of NDVI and NDWI for our study area in the same period of time
(i.e., NDVIj, NDWIj). These two vegetation indices were employed as synthetic daily indices in the
model over the next 8-day period (j + 1) assuming that vegetation greenness and water content changes
would be negligible in such a short period of time. Using the two types of variables per day (i.e.,
actual daily Tsi and PWi; synthetic daily NDVIj and NDWIj), we then calculated the study area daily
average-value for each input variable in i day (i.e., Tsi, PWi, NDVIj, NDWIj). Then, by comparing
the variable specific-value at a given pixel within our study area in i day (i.e., Tsi, PWi, NDVIj,
NDWIj) with the daily average-value in the whole study area for the relevant variable in the same
day (i.e., calculated in previous step), we classified each input variable during the i day into two fire
danger classes (i.e., high or low) assuming that the following conditions might support fire occurrence:

• higher temperature than daily average (i.e., Tsi ≥ Tsi);
• lower precipitable water than daily average (i.e., PWi ≤ PWi);
• lower level of vegetation greenness than daily average (i.e., NDVIj ≤ NDVIj); or

• lower vegetation water content than daily average (i.e., NDWIj ≤ NDWIj).
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Figure 4. The schematic diagram of employed method, along with characteristics of danger condition
in day (i + 1) using the model input variables including: actual daily surface temperature (Tsi) and
precipitable water (PWi); and synthetic daily normalized difference vegetation index (NDVIj) and
normalized difference water index (NDWIj).
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Finally, we combined these fire danger classes in i day in order to generate fire danger map for next
day (i.e., i +1). The generated fire danger map consisted of five classes: (i) extremely high, where all
four input variables were classified as high fire danger; (ii) very high, where at least three input
variables were classified as high fire danger; (iii) high, where at least two of the input variables were
classified as high fire danger; (iv) moderate, where at least one of the input variables was classified as
high fire danger; and (v) low, where none of the four input variables were classified as high fire danger.

3.3. Incorporating SFD Maps with Enhanced FFDFS

We incorporated the SFD maps (described in Section 3.2) with the enhanced FFDFS in order to
modify the generated daily fire danger maps in Section 3.1. As such, we evaluated these combinations:

(i) enhanced FFDFS plus human-caused SFD map;
(ii) enhanced FFDFS plus lightning-caused SFD map; and
(iii) enhanced FFDFS plus both the human- and lightning-caused SFD maps.

In such modifications, we assigned the generated fire danger classes into a higher class where the
SFD maps showed “high fire danger” conditions. However, the generated fire danger classes remained
unchanged where the SFD maps showed “low fire danger” conditions. Using the new combinations,
we generated a new set of daily fire danger maps in order to forecast fire danger conditions.

In order to determine the best combination of remote sensing-based data and SFD maps in
forecasting forest fire danger conditions, we evaluated the remote sensing-based daily fire danger
maps (i.e., generated in Section 3.2), and enhanced ones based on the SFD maps by overlaying the
ground-based forest fire spots during the period 2009–2011. In this case, we calculated both the
percentage of detected fires and the daily occupied area by each fire danger class. Note that in the
evaluation phase, we employed those fire spots that burned an area equal to, or greater than, 1 hectare,
because a burned area of less than 1 hectare might not be detected by the spatial resolution employed
in this study (i.e., 500 m). Upon evaluating the daily fire danger maps, we compared those with the
results reported by Chowdhury and Hassan [8] in order to find the best system in forecasting forest
fire danger conditions.

4. Results and Discussion

4.1. Generating of Fire Ignition Source-Based SFD Maps

We compared both the human- (i.e., road buffer) and lightning-based SFD maps against the
ground-based forest fire spots during the periods of 1961–2014 and 2001–2014, respectively (Figure 5).
We found that 65.3% and 78.8% of the fires occurred within the high danger class of the human-caused
SFD on an average during the periods 1961–2000 and 2001–2014, respectively, while 87.8% and 12.2%
of the study area fell under the low and high danger classes, respectively. It is interesting to note
that the historical human-caused fires during the period 1961–2014 showed an increasing trend since
2001 (Figure 2). In fact, our analysis revealed that an increment of 13.5% (i.e., from 65.3% to 78.8%)
on average during the 2001–2014 period, in comparison to 1961–2000, occurred within the 500 m
distance from the roads’ center. This might be related to the fact that human accessibility to the forested
areas increased due to several factors. Those included: (i) the expansion of the oil and gas companies’
activities in the heart of forested lands; (ii) the establishment of more recreation facilities and camps
near the roads; (iii) the relatively warmer weather; and (iv) cheaper vehicles to increase the number
of visitors [20,23]. In addition, the observed results were similar to the literature that indicated road
networks could be employed as a good indicator to detect human-caused fires [24,25].
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In case of the lightning-caused SFD map, we observed that 38.4% of the fire events fell within
the extent of the high danger class; while 80.8% and 19.2% of the study area fell under the low and
high danger classes, respectively. Our findings of a relative smaller amount of detected fires would be
quite normal due to the fact that the location of lightning strikes would be random as influenced by
atmospheric conditions [22,26,27]. In addition, actual fire events would also depend on vegetation
cover (in other words, fuel availability), their states, and fuel continuity [22,28–30].

4.2. Enhacing the Remote Sensing-Based FFDFS and Its Incorporation with the SFD Maps

Upon implementing the proposed modifications on the remote sensing-based FFDFS, and
combining that with the 500 m road buffer and lightning-caused SFD map, we evaluated their
performance against the ground-based forest fire spots during the period 2009–2011 fire seasons
(Table 2). We found a reasonable amount of fires, i.e., about 77% of the fire events fell in the top three
fire danger classes of extremely high, very high, and high categories (Table 2). In fact, our findings
were quite similar in comparison to the outcome of the original FFDFS (i.e., about 77%) reported
in Chowdhury and Hassan [8]. We also calculated the areas under each of the fire danger classes,
where about 50% of the study area fell under low and moderate danger classes (Table 3). We were
unable to compare this result as Chowdhury and Hassan [8] did not report a similar analysis.

It is interesting to note that our proposed modifications were quite effective. For example, the use
of cloud-contaminant pixels in the image as low danger reduced the computational time and no
significant impact on the outcomes. In fact, another study reported a negative correlation between
cloudiness and forest fire occurrences [31]. Additionally, the computation of NDWI was relatively
simple, which was also used in describing fire danger conditions in other studies [16,32]. Finally,
the time step of Ts, i.e., from 8-day to daily-scale, would be useful as the temperature would be known
as more dynamic in the shorter time-scale.



Remote Sens. 2018, 10, 923 9 of 14

Table 2. Comparison of the modified FFDFS and its integration with road buffers and lightning-caused SFD maps against the ground-based forest fire spots in terms
of fire detection performance.

Year Danger Class

Original FFDFS Modified FFDFS Modified FFDFS + Road Buffer Modified FFDFS + Lightning Modified FFDFS + Road
Buffer + Lightning

% of:

Detected Fires Cumulative (↓) Detected Fires Cumulative (↓) Detected Fires Cumulative (↓) Detected Fires Cumulative (↓) Detected Fires Cumulative (↓)

2009

Extremely High 8.96 8.96 10.39 10.39 19.48 19.48 19.48 19.48 31.17 31.17
Very High 28.36 37.31 33.12 43.51 29.87 49.35 29.22 48.70 38.31 69.48

High 36.57 73.88 28.57 72.08 28.57 77.92 27.27 75.97 23.38 92.86
Moderate 20.90 94.78 22.73 94.81 18.18 96.10 20.78 96.75 7.14 100.00

Low 5.22 100.00 5.19 100.00 3.90 100.00 3.25 100.00 0.00 100.00

2010

Extremely High 14.88 14.88 8.08 8.08 15.66 15.66 24.75 24.75 40.91 40.91
Very High 30.95 45.83 43.94 52.02 49.49 65.15 36.36 61.11 37.37 78.28

High 30.36 76.19 26.77 78.79 16.67 81.82 20.71 81.82 12.63 90.91
Moderate 19.64 95.83 15.66 94.44 12.63 94.44 15.15 96.97 8.59 99.49

Low 4.17 100.00 5.56 100.00 5.56 100.00 3.03 100.00 0.51 100.00

2011

Extremely High 15.45 15.45 11.11 11.11 36.30 36.30 25.19 25.19 49.63 49.63
Very High 36.59 52.03 41.48 52.59 31.11 67.41 31.85 57.04 28.15 77.78

High 30.08 82.11 26.67 79.26 17.78 85.19 27.41 84.44 17.04 94.81
Moderate 13.82 95.93 14.07 93.33 8.89 94.07 10.37 94.81 5.19 100.00

Low 4.07 100.00 6.67 100.00 5.93 100.00 5.19 100.00 0.00 100.00

2009–2011

Extremely High 13.09 13.09 9.86 9.86 23.81 23.81 23.14 23.14 40.57 40.57
Very High 31.97 45.06 39.51 49.37 36.83 60.64 32.48 55.62 34.61 75.18

High 32.34 77.39 27.34 76.71 21.01 81.64 25.13 80.75 17.68 92.86
Moderate 18.12 95.51 17.49 94.19 13.23 94.87 15.43 96.18 6.97 99.83

Low 4.49 100.00 5.81 100.00 5.13 100.00 3.82 100.00 0.17 100.00
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Table 3. Comparison of the modified FFDFS and its integration with road buffers and lightning-caused SFD maps against the ground-based forest fire spots in terms
of areas under the fire danger classes *.

Year Danger Class Modified FFDFS Modified FFDFS + Road Buffer Modified FFDFS + Lightning Modified FFDFS + Road Buffer + Lightning

Area (%) Cumulative (↑) Area (%) Cumulative (↑) Area (%) Cumulative (↑) Area (%) Cumulative (↑)

2009

Extremely High 2.57 100.00 5.24 100.00 7.77 100.00 9.84 100.00
Very High 21.75 97.42 22.39 94.76 22.96 92.23 23.42 90.16

High 26.95 75.67 27.81 72.37 28.75 69.27 29.37 66.74
Moderate 34.72 48.72 32.10 44.56 29.71 40.52 27.72 37.37

Low 14.00 14.00 12.46 12.46 10.81 10.81 9.65 9.65

2010

Extremely High 1.94 100.00 4.61 100.00 7.13 100.00 9.16 100.00
Very High 21.77 98.07 22.17 95.39 22.78 92.88 23.07 90.84

High 25.51 76.30 26.76 73.22 27.81 70.10 28.78 67.77
Moderate 36.13 50.79 33.58 46.46 30.99 42.29 29.05 38.99

Low 14.66 14.66 12.88 12.88 11.30 11.30 9.94 9.94

2011

Extremely High 2.56 100.00 4.88 100.00 7.61 100.00 9.33 100.00
Very High 21.10 97.44 21.87 95.12 22.39 92.40 22.96 90.67

High 25.72 76.34 27.26 73.25 27.88 70.01 29.13 67.71
Moderate 35.98 50.62 33.20 45.99 30.76 42.13 28.66 38.58

Low 14.64 14.64 12.79 12.79 11.37 11.37 9.92 9.92

2009–2011

Extremely High 2.36 100.00 4.91 100.00 7.50 100.00 9.44 100.00
Very High 21.54 97.64 22.14 95.09 22.71 92.50 23.15 90.55

High 26.06 76.10 27.28 72.95 28.15 69.79 29.09 67.40
Moderate 35.61 50.04 32.96 45.67 30.48 41.64 28.47 38.31

Low 14.43 14.43 12.71 12.71 11.16 11.16 9.84 9.84

* In the original FFDFS, Chowdhury and Hassan [8] did not report occupied aresa under each of the fire danger classes.
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Once we added the road buffer to the modified FFDFS, the amount of detected fires increased
from about 77% to 82%, which demonstrated the effectiveness of employing such a buffer zone
around the road networks in detecting fire events. As a matter of fact, such an improvement was
expected as roadsides would be used by the people for various activities, as described in Section 4.1.
When we incorporated the lightning-caused SFD map with modified FFDFS, the amount of detected
fires improved from about 77% to 81%, which was similar to the addition of road buffer to the modified
FFDFS. Finally, when we incorporated both road buffer and lightning-caused SFD map with the
modified FFDFS, we observed a very large improvement, i.e., about 16% in the amount of detected fires
by the system. In this case, about 93% of the fires fell in the top three fire danger classes, which were the
highest among all the combinations evaluated. In addition to the amount of detected fires by each of
the proposed combinations with the modified FFDFS, we also calculated the area under each of the fire
danger classes in order to comprehend the system performance (Table 2). Then, we compared the area
in the bottom two fire danger classes, i.e., moderate and low classes for the three combinations with
the modified FFDFS. In this case, we found that the combination of the road buffer with the modified
FFDFS was best, e.g., about 46% of the area fell under the low and moderate danger classes, which was
about 4% less compared to that of the modified FFDFS. The decrease in overlap continued when we
incorporated the lightning-caused SFD map with the modified FFDFS. In this case, the reduction
happened from about 50% to about 42%. Finally, employing both the road buffer and lightning-caused
SFD map with the modified FFDFS caused a decrease of 12% falling (i.e., from about 50% to 38%).
The reason for the loss in area would be related to assigning the generated moderate fire danger class
into a higher class where the human- (road buffer) and/or lightning-caused SFD maps showed a “high
fire danger” condition. From an operational point of view, it would be highly desirable to keep more
and more area under the low and moderate danger classes at the highest possible level. That way
fire-fighting efforts could be concentrated over the top three fire danger classes of extremely high, very
high, and high. Consequently, we considered that the incorporation of the human-caused SFD with
the modified FFDFS was the best from an operational perspective.

Figure 6 shows an example of fire danger maps generated on 14 May 2011 by the modified remote
sensing-based FFDFS using the individual variable (i.e., Ts, PW, NDVI, and NDWI)-specific danger
conditions, which was then integrated with the human- (road buffer) and lightning-caused SFD maps.
As the remote sensing-derived variables were dynamic in nature at daily (for Ts, and PW) and 8-day
time scales (for NDVI, and NDWI), they would be the prime controller of the final outcomes depicted
in Panels A, A + B, A + C, and A + B + C.

Despite, the reasonable performance of the modified FFDFS in conjunction with the road
buffer-based SFD map, some of the fires, i.e., about 18% on an average during 2009–2011 fell
under the moderate and low fire danger classes. This issue could be improved by integrating other
variables, such as: (a) vegetation phenological stages, as that would affect the fuel availability for fire
occurrences [33]; (b) atmospheric conditions, as those would regulate the lightning strikes [22,26,27];
and (c) topographical features, as those might influence the vegetation conditions [34].
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5. Concluding Remarks

In this paper, we demonstrated a simple, but effective framework for forest fire danger forecasting
and its implementation over the forested regions in the northern portion of Alberta. We first applied
three modifications on the original FFDFS: (i) improving the temporal resolution of the employed
Ts from 8-day to daily-scale; (ii) reducing the system computation time by removing the gap-filling
algorithm upon assuming that the cloud-contaminant pixels would exhibit low fire danger conditions;
and (iii) substituting the employed NMDI by a simpler vegetation index of NDWI. In addition,
we evaluated the outcome of modified FFDFS by combining two fire ignitions source-based SFD maps
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derived from historical human- and lightning-caused fires during 1961–2014. Then we examined the
outcomes of the different combinations against the actual fire spots during the fire seasons of 2009–2011.
Among all of the combinations, we found that the integration of modified FFDFS and a road buffer
(human-caused SFD map) demonstrated the most effective results in fire detection, i.e., about 82%
on an average in the top three fire danger classes, where about 46% of the study area fell under the
moderate and low danger categories. Despite these favourable results, we strongly recommend that
our proposed system should be thoroughly evaluated before being implemented in other ecosystems
in Canada and elsewhere in the world.
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