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Abstract: River flow forecasting is critical for flood forecasting, reservoir operations,  

and water resources management. However, flow forecasting can be difficult, challenging 

and time consuming due to the spatial and temporal variability of climatic conditions and 

watershed characteristics. From a practical point of view, a simple and intuitive approach 

might be more preferable than a complex modeling approach. In this study, our objective 

was to develop short-term (i.e., daily) flow forecasting models in the Bow River at the city 

of Calgary, Alberta, Canada. Here, we evaluated the performance of several regression 

models, along with a newly proposed “base difference” model, by using antecedent daily 

river flow values from three gauge stations (i.e., Banff, Seebe, and Calgary). Our analyses 

revealed that using a multivariable linear regression formulated as a function of upstream 

gauge stations (i.e., Banff or Seebe) and the station of interest (i.e., Calgary) using antecedent 

flows demonstrated strong relationships (i.e., having r2 (coefficient of determination) and 

RMSE (root-mean-square deviation) of approximately 0.93 and 14 m3/s, respectively).  

As such, we opted to suggest that the use of Banff and Calgary stations in forecasting the 

flows at Calgary could be considered as it would require a relatively lower number of 

gauge stations. 
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1. Introduction 

As floods are one of the most serious natural disasters and present major societal concerns, effective 

flood management has always been one of the most important topics in hydrology and water resources 

engineering. The detrimental effects of floods, in particular extreme floods such as the 2013 flood in 

southern Alberta, have drawn attention to the need for more effective flood management, although the 

occurrence of floods cannot be prevented. Among a variety of measures for mitigating the 

consequences of floods, river flow forecasting, a non-structural measurement, in the short term is of 

great importance; whereas in the medium and long term, it is essential for reservoir operation and 

water resources management [1]. Therefore, depending on the use of the forecast, the lead time can be 

of particular concern. However, it is known that the further ahead a prediction is made, the more it is 

subject to lower accuracy. For flood management purposes, accurate flow forecast with several days of 

lead time is desired in order for there to be enough time for authorities to issue a flood warning and to 

allocate resources for the evacuation and relocation of the public and their valuables. Although a 

variety of forecasting approaches have already been formulated, developing a model to accurately 

forecast river flows, in particular for a river which responds to storm events quickly, has been a 

challenge posed to hydrologists for some time. 

River flow forecasting models can be broadly classified into two general categories: process-driven 

models and data-driven models [1]. Process-driven models attempt to describe or represent the 

physical controlling processes mathematically within the watershed system, which may be achieved by 

combining empirical and physically based equations. In contrast, data-driven models are “black-box” 

in nature, as they do not require knowledge of the underlying process beforehand and are solely based 

on empirical equations calibrated to field data. Overall, the major differences in the two types of 

models are the representation of the governing processes and their data needs [2]. 

A rainfall–runoff model is a type of physically based model that attempts to capture the rainfall–runoff 

relationship. This is a difficult hydrologic phenomena to comprehend due to the complexities involved 

in modelling the non-linearity and tremendous spatial/temporal variability of watershed characteristics 

(e.g., soil type, vegetation, topography, etc.), snowpack, and precipitation patterns [3,4]. To date, 

various physically based models have been developed and implemented. For instance, Beven and 

Kirkby [5] used a topography-based hydrological model (TOPMODEL) to forecast river flow in the 

Crimple Beck basin in Yorkshire, England. In another study, Vieux et al. [6] utilized a physical 

rainfall–runoff model, called r.water.fea, which relies on conservation equations of mass and 

momentum for flood forecasting in the Blue River and Illinois River, USA. Similarly, Marsik and 

Waylen [7] used a physically-based rainfall–runoff model, called CASC2D, in the Quebrada Estero 

watershed in Costa Rica. Although physically based models are advantageous in terms of 

understanding the separate hydrological processes that govern the whole system, in many occasions 

the input data may be unavailable, or expensive and time consuming to collect [8]. In addition,  
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a number of variables still need to be determined through model calibration. This makes the operation 

of physically-based models difficult and time consuming. 

For real-time forecasting, data-driven models might be favorable, as sophisticated physical models 

often need tremendous amounts of data and long computational times for model calibration [8].  

A data-driven model might be preferable when underlying physical mechanisms are not fully 

understood and if data of both input(s) and output(s) are sufficiently available to determine/establish 

the input–output relationship while bypassing the physical explanation of their dependence. Recently, 

data-driven models have been extensively used in stream flow forecasting [9–14]. The models range 

from straight-forward empirical models, such as regression models, to soft computing models using 

neural and fuzzy logic techniques. Some of such model examples are briefly described in Table 1. 

Table 1. Examples of data-driven models in forecasting river flow or river water levels. 

Model Type Description 

Artificial Neural Network 
(ANN) 

ANN was used on a rainfall–runoff model to forecast daily flows on the Blue 
Nile river in Sudan [15]. In other studies, antecedent flows were used as input 
into ANN model to forecast monthly flow on the Göksudere River [12], 
and daily flow on the Göksu, Lamas and Ermenek Rivers [16] located in 
Turkey. Similarly, ANN was used to predict future groundwater levels 
using past observed groundwater levels in a coastal unconfined aquifer 
sited in the Lagoon of Venice, Italy [17]. 

Fuzzy Logic 

Fuzzy logic was employed on a rainfall–runoff model to forecast hourly 
river flows for flood prediction in the Narmada River, India [18]. In other 
studies, daily river water levels were predicted in the Buriganga River, 
Bangladesh by using fuzzy logic model, in which the upstream water 
levels are the inputs [19]. 

Time Series Model 

Auto-regressive (AR) and auto-regressive integrated moving average 
(ARIMA) models were applied to forecast monthly flows in Wabash 
River, Indiana, USA [20]. Noakes et al. [13] assessed the forecasting 
ability of ARMIA, auto-regressive moving average (ARMA) and AR models 
in forecasting monthly flows in 30 rivers in North and South America. 

Nearest-Neighbor Method 
(NNM) 

A comparison among ARMA, ANN, and NNM in forecasting monthly 
river flows using antecedent flows was conducted in the Han, Lancang, 
and Yangtze rivers in China [21]. 

Regression Model 

Regression models, in which gridded observed precipitation and 
model-simulated snow water equivalent data were used as the predictors, 
were applied to forecast seasonal river flows in Sacramento River, San 
Joaquin River, and Tulare Lake hydrologic regions in California [9]. 

Adaptive Neuro Fuzzy 
Inference System (ANFIS) 

ANFIS was used to forecast daily river flows using antecedent flows as 
inputs in the Great Menderes River in Turkey [10]. 

The primary problem in the use of soft computing techniques, such as fuzzy logic and ANN, is that 

there is no standard set of rules on how to best implement them [22]. If a model is too simple, the 

solution might be far too generalized to be accurate; whereas if a model is too complex there may be 

insufficient generalization and its parameters could be more difficult to calibrate and interpret [23].  

In the model development, a modeler has often focused on model performance, but not on the 
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robustness and simplicity of the model itself, which could lead to over-parameterization, over-fitting, 

and consequently the reduction of the generalization capabilities of models. Therefore, a systematic 

framework, which can reduce the involvement of human objective judgments in model development, is 

necessary to further extend such techniques in real applications.  

For a populated community, prompt forecasting, for which simple models of sufficient accuracy are 

indeed desirable, is crucial for reducing flood damage. Furthermore, the use of readily available data is 

vital for prompt forecasting. Thus, we opted to explore one of the simplest methods of analyzing data 

(i.e., regression analysis), which has a long history in hydrologic modeling. Nayak et al. [18] argued 

that increasing the model complexity by increasing the number of parameters did not enhance the 

model performance and suggested that simple models involving fewer parameters and simple 

mathematical procedures (e.g., ordinary least squares solution) would be suitable for river flow 

forecasting. To the authors’ best knowledge, the applicability of simple regression models for flow 

forecasting on the Bow River at the most populated center along the river, the city of Calgary, Alberta, 

Canada, has not been assessed yet. Hence, the overall objective of this paper was to develop simple 

and fast to implement models to forecast flows at Calgary using antecedent flows at hydrometric gauge 

stations in upstream of Calgary and/or at Calgary. Additionally, the specific objectives were to 

determine: (i) the optimal lead time forecasting the flow; and (ii) the flow gauging stations needed for 

more accurate forecasts. 

2. Study Area and Data 

The Bow River originates from the Canadian Rockies flowing through three geographic regions:  

the mountains, the foothills, and the prairies. The scope of this study revolves around the upper Bow 

River basin, and spans from the headwaters of the Bow River, at 1920 m above sea level, to the city of 

Calgary, at approximately 1050 m above sea level (Figure 1). In general, the river flow is influenced 

by the large variations in climatic conditions that are indicative of southern Alberta, with long, cold 

winters and short, warm summers [24]. Winters are characterized as cold with mean temperatures of 

approximately −11.7, −12.4 and −11.7 °C in the coldest months of the Rocky Mountains, foothills and 

plains, respectively. Alternatively, summers are relatively warm with mean temperatures of 

approximately 11, 14.3 and 17.8 °C in the warmest months of the Rocky Mountains, foothills and 

plains, respectively [25]. Annual precipitation in the upper Bow River ranges from 500 to 700 mm, 

with about half of that amount falling as snow; while at Calgary, annual precipitation is 412 mm,  

with about 78% of this precipitation coming in the form of rain [24]. Climatic conditions dictate the 

Bow River’s water sources, which include rainfall–runoff largely from late spring to early summer, 

groundwater recharge which is the major water source during winter, and snowmelt that occurs in 

spring and summer. These spatially and temporally varying climatic conditions, occasional dry 

westerly Chinook winds that can cause as much as a 30 °C change in temperature [24], the relative 

contribution of each water source to river flow, and the spatial geological characteristic of the 

watershed all pose a challenge in forecasting the flow in the Bow River. Thus, a data-driven model, 

which can bypass the need to model the complex underlying hydrologic processes governing the flow 

at Calgary is indeed preferred. 



Water 2015, 7 103 

 

 

 

Figure 1. Study area and location of the three flow gauge stations where flow data were 

available and used. The extent of the figure is from the origin of the Bow River to just  

past Calgary. 

The Bow River flows through the heart of the city of Calgary, which is home to 1.1 million [26] and 

can be considered one of the main commercial and cultural centers of the province of Alberta.  

The Bow River is prone to flooding as demonstrated in most recent major floods of 2005 and 2013 in 

Calgary and southern Alberta. In June 2005, city-wide heavy rains caused floods and more than 1500 

Calgarians were evacuated in a state of local emergency [27]. In 2013, parts of 32 communities were 

evacuated affecting about 80,000 people [28]. 

This study focused on investigating the use of antecedent flows to forecast future flows using 

simple modeling approaches. Antecedent flows have been used to forecast flows or water levels in a 

number of previous studies [10,12,19,29]. For this study, average daily flows over 30 years from 1980 

to 2011 were collected from the Water Survey of Canada (WSC) at three stations: Banff at Bow River, 

Seebe at Bow River, and Calgary at Bow River (Figure 1), which were chosen considering data 

consistency and completeness. To forecast flows at Calgary, antecedent flows at Calgary and/or at 

upstream gauge stations, including Banff at Bow River and Seebe at Bow River, were used as the 

independent variables. Although data sets including more recent observations, in particular flows 

during the 2013 Calgary flood, are preferable for this research objective, it should be noted that 

verified flow data in 2012 and 2013 had not yet been released by the WSC at all gauges stations used 

during the time of this study. The data was then divided into two subsets: the data from 1980 to 2000 

was used in the model calibration, and the remainder was used in the model validation. Despite the fact 
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that more gauge stations exist along the upper Bow River, it was observed that their datasets are either 

incomplete or not sufficiently long. 

3. Methods 

Figure 2 shows a schematic diagram illustrating the method developed/implemented in this study. It 

consisted of three major components: (i) determination of optimal lead time for flow forecasting;  

(ii) calibration of three different forecasting models including base difference model (BDM), linear 

regression model (LRM), and multiple linear regression model (MLR); and (iii) validation of the 

models. Among the three types of modeling approaches, the base difference model was newly 

proposed in this paper. The methods and procedures adopted in this paper are described in detail in the 

following sub-sections. 

 

Figure 2. Schematic diagram of the methods used in this study. 

3.1. Determination of Optimal Lead Days for Flow Forecasting  

In order to determine the optimal lead time, we conducted a correlation analysis using the 

calibration dataset. In the analysis, correlation coefficients were calculated between the flow at Calgary 

at time t day and the flow at each selected gauge stations (i.e., Banff, Seebe, and Calgary) at different 

time lags between 1 and 10 days. In theory, the correlation for the same (in this case Calgary station) 

or relatively near gauge station (i.e., Seebe station) would exhibit a stronger relationship. Thus, we put 

more emphasis on the further site (i.e., Banff station) and the corresponding day of the highest 
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correlation was defined as the optimal lead time. In order to ensure a fair and even comparison among 

all the models developed in this paper, a single optimal lead time was determined and employed in the 

development of all the flow forecasting models. 

3.2. Development of the Base Difference Model 

There are many existing data-driven modeling methods (Table 1) that can be used or potentially 

used to forecast flow for this study area. However as previously highlighted, the need for simplicity 

and prompt forecasting still remains important in flow forecasting for flood management purposes. 

The newly proposed base difference model (BDM) is a simple and intuitive flow forecasting method 

that was developed based upon the flow characteristics observed on the Bow River in winter seasons, 

when flows are not significantly influenced by both snowmelt and rainfall. As a first step, we plotted 

the flow time-series with the calibration and validation dataset for all three gauge stations. A more or 

less constant offset in flow was expected between Calgary and the other two gauge stations, 

respectively, during late fall to early spring season (i.e., between October and March). This expectation 

arose from the fact that during this time period most of the precipitation would take place in the form of 

snow, which would consequently have little to no influence on the flow regimes. The constant offset,  

i.e., the average of the flow offsets from October to March between Calgary and the other gauge stations 

of interest calculated using Equation (1), was termed as base difference throughout this paper. The base 
difference along with antecedent flows was used to forecast flows at Calgary using Equation (2):  ܳௗതതതതത = ∑ ሺܳ@௧ − ܳ௦௧@௧ିௗ ௧ሻୀଵ ݊  (1)෨ܳ@௧ = ܳ௦௧@௧ିௗ ௧ + ܳௗതതതതത (2)

where ܳௗതതതതത is the average base difference between Calgary and Banff/Seebe/Calgary; ܳ@௧  is the 

flow at Calgary at time t; ܳ௦௧@௧ିௗ	௧  is the flow at Banff/Seebe/Calgary at time t-lead time; ෨ܳ@௧ is the forecasted flow at Calgary; n is the number of observations. 

3.3. Development of the Linear Regression Models 

Besides the newly proposed BDM in this study, the other simple forecasting method is linear 

regression. Regression analysis has been one of the most widely used techniques for analyzing data 

and has been employed in various disciplines [30]. Here, we expected that the linear regression model 

had the capabilities to yield satisfactory flow forecasts at Calgary when using antecedent flows  

(i.e., t-optimal lead days) at Calgary and/or upstream of Calgary, as we assumed that the independent 

variables are highly correlated with the dependent variable. In this study, linear regression models with 

one, two, and three independent variables, respectively, were created using least squares analysis. 

These models were developed using the calibration dataset to regress the flows at the Calgary station at 

time t on the flows of the other gauge station(s) at time t-lead time. Regression analyses were 

conducted in order to establish relations between the Calgary gauge station and: (i) Banff; (ii) Seebe; 

(iii) Calgary; (iv) Banff and Seebe; (v) Banff and Calgary; (vi) Seebe and Calgary; and (vii) Banff, 

Seebe, and Calgary; stations. Then, in the model validation, the developed regression models were 

applied to forecast flows at the Calgary gauge station using the validation dataset. 
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3.4. Validation and Evaluation of the Models 

The performance of the models was evaluated by using quantitative statistical metrics, including the 

coefficient of determination (r2), and root mean square error (RMSE), both of which have been used in 

previous forecasting studies [8,10,31]. The r2 indicates the goodness-of-fit; while the RMSE was 

selected to measure absolute errors. Please note that besides these two statistical measures, many 

feasible alternatives, such as the mean absolute error and the mean square relative error, can be found 

from the literature and that different works have used different measures to evaluate model 

performance. The investigation of the effects of the use of different measures for model performance 

evaluation is beyond the scope of this study; thus it was not assessed and discussed in this paper. The 

quantitative statistical metrics are calculated as follows: 

ଶݎ = ۇۉ ∑ ሺܺ − തܺሻሺܻ − തܻሻୀଵට∑ ሺܺ − തܺሻଶୀଵ ට∑ ሺܻ − തܻሻଶୀଵ ۊی
ଶ
 (3)

ܧܵܯܴ = ඩ1݊ሺܺ − ܻሻଶ
ୀଵ  (4)

where, ܻ is the predicted flow; തܻ is the mean of the predicted flows; ܺ is the observed antecedent flow; തܺ is the mean of the observed antecedent flows; n is the number of observations. 

4. Results and Discussion 

4.1. Determination of Optimal Lead Days for Flow Forecasting  

Figure 3 illustrates examples of how the optimal lead time for the flow forecasting model was 

chosen. As expected, the graphs showed that the flow in the furthest station (i.e., Banff) had the lowest 

relationship (i.e., r2 in between 0.82 and 0.85; top panel in Figure 3) with the flow at the prediction 

station (i.e., Calgary). The strongest relationships (i.e., r2 in between 0.88 and 0.97) were seen using 

antecedent day flows at the same station as the prediction flow station (i.e., Calgary vs. Calgary; 

bottom panel in Figure 3). Seebe station (i.e., located between Calgary and Banff), demonstrated a 

middle of the pack relationship (i.e., r2 in between 0.87 and 0.92; middle panel in Figure 3). Overall, 

the highest correlations were observed during 2, 0–1, and 1 days for Banff-Calgary, Seebe-Calgary and 

Calgary-Calgary stations, respectively. As previously stated, more emphasis was given on the furthest 

gauge station (i.e., Banff) and the corresponding day of the highest correlation (i.e., r2 ≈ 0.85) was 

observed at 2 days. To confirm using a 2-day lead time forecasting period, a simple calculation was 

conducted. The average velocity measured in the Calgary reach in October of 2010 was approximately 

1 m/s [32]. If we assumed this average was to be constant, then in a 2-day time period, the water would 

travel 172.8 km; which was close to the actual distance (i.e., ~151 km) between the two stations. In 

addition, for flood management perspective, longer lead time would be preferable. Considering all 

these factors, a time lag of 2 days was determined as the “optimal” lead time for this particular study 

and was employed to develop all forecasting models. 
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Figure 3. Determination of lead time determination for forecasting flow at Calgary using 

the measured flows from Banff, Seebe, and Calgary stations during the time t, t-1 day,  

t-2 days, t-3 days. 

The acceptability of a forecast lead time could be relative to the size of the river and basin area to 

the prediction point. For example, over 90% of Bangladesh’s surface water is generated upstream of its 

border with respect to two major trans-boundary rivers, the Ganges and Brahmaputra, and the only 

reliable river flow data comes from Bangladesh gauge measurements once the rivers cross the  

India–Bangladesh border. Consequently, Bangladesh forecast lead times were limited to 2 or 3 days 

for the interior of the country and had essentially no lead time in areas close to the border [33,34].  

The Ganges and the Brahmaputra basin have an area of approximately 1,087,300 and 543,400 km2, 

respectively [35]. Together, both basins are shared among China, India, Bhutan, Nepal and 

Bangladesh. Yet, only 46,300 km2 of the Ganges basin and 39,100 km2 of the Brahmaputra lie within 

Bangladesh [35]. Furthermore, the Jamuna (i.e., main distributary channel of the Brahmaputra) and 

Padma (i.e., the main distributary of the Ganges) Rivers have an approximate length of 205 and 120 km, 

respectively. Our study observed a lead time of 2 days, with a drainage basin 7864 km2 and a river 

length of 249 km from the source of the Bow River to the Calgary gauge station (see Figure 1). 

Although this comparison should be taken lightly, as there are many environmental factors that could 

influence flow forecasting besides basin size and river length, the 2-day lead time chosen for our study 

could be considered reasonable.  
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4.2. Model Calibration and Validation 

Figure 4 shows average daily flows at the three gauge stations using both the calibration dataset 

(i.e., Figure 4a), and validation dataset (i.e., Figure 4b). During the 1980–2000 period, we observed 

that there was an almost constant offset (i.e., 43.27 m3/s) between Banff and Calgary within the day of 

year 1–90 (i.e., 1 January to 31 March) and 174–365 (i.e., 1 October to 31 December). Additionally, 

we noticed that the average daily flows between Calgary and Seebe within the same time periods were 

very similar with only an average offset of 3.25 m3/s (see Figure 4a). As mentioned in the Methods 

Section, the constant offsets between Banff and Calgary were expected during the observed time due 

to the cold weather causing precipitation to fall mostly in the form of snow and eventually accumulate 

on the ground. Thus, the flow during this time would primarily be influenced by groundwater recharge, 

and not rainfall or snowmelt. Finally, upon considering these constant offsets, we developed three base 
difference models as a function of optimal lead time of 2 days using the flows at Banff, Seebe,  

and Calgary gauge stations (see Table 2 for details). 

 

Figure 4. Average daily river flow at each gauge station during the period: (a) 1980–2000 

(i.e., the calibration dataset); and (b) 2001–2011 (i.e., validation dataset). 

In addition to the BDMs, we also developed both the linear regression models (LRMs) and multiple 

linear regression models (MLRs) models using the calibration dataset during the 1980–2000 period as 

a function of 2 days of optimal lead time (see Table 2 for details). It would be interesting to note that 

all of the developed models (that included BDMs, LRMs, and MLRs) demonstrated strong 

relationships (i.e., r2 and RMSE were in the range of 0.84–0.94, and 13.63–24.16 m3/s, respectively). 

However, some LRMs and MLRs including C-LRM, BC-MLR, SC-MRL, and BSC-MLR, in which 

antecedent flows at Calgary were used as the independent variable or one of independent variables, 

produced more accurate forecasts according to the performance metrics. Overall, all regression models 
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outperformed BDMs, which had the simplest mathematical formula; however, all BDMs produced 

sufficiently accurate forecasts, as r2 of these models were all above 0.84. Despite the fact that in Table 2 

the model comprising of all three station had the best agreements (i.e., r2 and RMSE of 0.94, and  

13.63 m3/s, respectively), we considered the MLR model comprising of the Banff and Calgary gauge 

stations as the most suitable (i.e., having r2 and RMSE of 0.94 and 13.75 m3/s, respectively). This was 

because the inclusion of the Seebe station did not greatly improve performance, and as seen in Figure 4 

the daily flow rates between Seebe and Calgary were somewhat redundant. 

Table 2. Calibrated models and their performance metrics. 

Model Type Model Model Equation r2 RMSE 

Base difference 

model 

B-BDM XBanff + 43.27 0.85 24.16 

S-BDM XSeebe + 3.25 0.90 17.60 

C-BDM XCalgary + 0.16 0.93 15.32 

Single variable linear 

regression model 

B-LRM 1.21 × XBanff + 39.84 0.85 21.87 

S-LRM 0.99 × XSeebe + 6.40 0.90 17.39 

C-LRM 0.96 × XCalgary + 3.25 0.93 15.17 

Multiple linear 

regression model 

BS-MLR (0.26 × XBanff) + (0.80 × XSeebe) + 12.17 0.91 17.02 

BC-MLR (0.36 × XBanff) + (0.72 × XCalgary) + 10.73 0.94 13.75 

SC-MLR (0.36 × XSeebe) + (0.63 × XCalgary) + 2.75 0.94 14.12 

BSC-MLR (0.27 × XBanff) + (0.16 × XSeebe)+(0.63 × XCalgary) + 8.69 0.94 13.63 

Notes: Banff base difference model = B-BDM; Banff linear regression model = B-LRM; Seebe base difference 

model = S-BDM; Seebe linear regression model = S-LRM; Calgary base difference model = C-BDM; Calgary 

linear regression model = C-LRM; Banff & Seebe multiple linear regression model = BS-MLR; Banff & 

Calgary multiple linear regression model = BC-MLR; Seebe & Calgary multiple linear regression  

model = SC-MLR; Banff, Seebe & Calgary multiple linear regression model = BSC-MLR. 

During the validation phase, all the developed models were used to conduct a 2-step ahead flow 

forecast using the independent validation dataset available during the 2001–2011 period. The results 

from the BDMs, LRMs, and MLRs are shown in Figures 5 and 6. In Figure 5, the outcomes from 

BDMs and LRMs models were almost identical in terms of r2 (i.e., in the range 0.80–0.92); however, 

differences were observed in RMSE-values (i.e., in the range: 14.86–25.64 m3/s for BDMs; and  

14.71–23.36 m3/s for LRMs). In Figure 6, all the MLR models performed quite well with r2 and RMSE 

in the range of 0.88–0.93 and 13.94–18.28 m3/s, respectively. However, as seen during the calibration 

phase, the highest performing MLR models all included antecedent flows at the Calgary gauge station 

(i.e., r2 and RMSE were approximately 0.93 and 14.00 m3/s, respectively). In addition, the best 

assumed model in calibration phase (i.e., comprising of Banff and Calgary gauge stations; see Table 2) 

also demonstrated very strong agreements (i.e., r2 and RMSE of 0.93, and 13.94 m3/s, respectively) 

during validation. Please also note that there appeared to be no difference in performance between  

BC-MLR and BSC-MLR as both the MLRs had the same performance metrics, r2 and RMSE, in model 

validation. Their performance in model calibration also appeared to be very similar as the same r2 and 

very similar RMSE were reported (Table 2). Therefore, it can be concluded that given that the 

antecedent flows at both Banff and Calgary were used as independent variables, the further inclusion 

of antecedent flows at Seebe was redundant as it did not enhance the model performance. In addition, 
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these results also illustrate that all the developed models under-estimated the observed flows 

statistically as the regression lines of forecasted flows on observed flows locate below the 1:1 lines 

(Figures 5 and 6). 

 

Figure 5. Comparisons between observed flow at Calgary gauge station and predicted flow 

from Banff, Seebe, and Calgary using base difference and single variable linear regression 

models in model validation (2001–2011). 

It would be worthwhile to note that our findings (in particular to the model agreements) were quite 

comparable and/or superior to other studies. Rezaeianzadeh et al. [29] developed a multiple linear 

regression model as function of accumulated rainfall with 1 and 2 days antecedent flows for predicting 

the maximum daily flow at the outlet of the Khosrow Shirin watershed, located in the Fars Province of 

Iran. Although a low r2 value of 0.525 was reported, similarly to our study it was observed that the 

inclusion of antecedent flows resulted in much better flow forecasts in both linear and nonlinear 

regression analyses. In addition, Sehgal et al. [36] used traditional multiple linear regression to forecast 

daily flow at the mouth of the delta region of Mahanadi river basin, India. This particular multiple 

linear regression model, which included antecedent flows of the gauge station under observation and 

two upstream gauge stations, saw a low r2 value of 0.671 at a similar 2-day lead forecast time. 

Based on the model development process of BDM, it can be seen that the flow contribution from 

snowmelt and rainfall can be isolated from baseflow, which is the major water source of the Bow 

River in winter seasons. Although the overall performance of the BDMs is not superior to other models 

developed in this study, their acceptable performance supports the rationale behind this modeling 

approach, which is that different hydrologic processes govern the flows in different seasons in this 
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river. As BDM can forecast flows given known base difference, which can be obtained from flow 

observations over winter seasons, and flow at the upstream of the location of interest, this modeling 

approach is simpler and more intuitive compared to LRM and MLR, which would require observations 

to determine regression coefficients. 

 

Figure 6. Comparisons between observed flow at Calgary gauge station and predicted flow 

using multiple linear regression models, i.e., BS-MLR, BC-MLR, SC-MLR, and BSC-MLR 

in model validation (2001–2011). 

As illustrated in Table 2, the MLRs, in general, outperform all their counterpart models, LRMs and 

BDMs. It is not surprising that adding antecedent flow at one more flow gauge station, which is also 

strongly correlated to flows at Calgary, in MRLs would increase the models’ capability to explain the 

variation of flows at Calgary. The superior performance of MLRs and LRMs to BDMs might be 

attributed to the fact that the regressive relationship between flows at Calgary and the antecedent flows 

in the upstream gauge stations and/or at Calgary can account for the variation of flow resulting from 

the snowmelt and rainfall upstream of Calgary and in Calgary to a certain degree. On the other hand, 

the BDMs are developed based on the flow difference at two gauge stations and the antecedent flow, 

thus such models completely ignore effects of rainfall and snowmelt between Calgary and its upstream 

gauge station. However, please note that, despite their drawbacks, BDMs are overall capable of 

producing satisfactory forecasts as reflected by their performance metrics. 

Despite the strong agreements between the observed and forecasted flows in both calibration and 

validation phases for the optimal model (i.e., BC-MLR), there were still small amounts of discrepancies 
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(i.e., ~7% variations) that were not addressed. Within the validation of all the models, some outlier points 

at approximately 600 m3/s in the observed Calgary flow were apparent (see Figures 5 and 6). This point 

corresponded to the flood that occurred in Calgary in June of 2005 due to heavy rainfalls. In Calgary, 

June 2005 had a total rainfall of 247.6 mm compared to a normal of 79.8 mm [37]. It was observed that 

none of the models developed in this study was able to account or predict for drastic changes from 

normal environmental conditions that influence the river flow, such as the heavy rainfalls experienced 

in June of 2005. Furthermore, if a large amount of rainfall or snowmelt suddenly would occur within 

the 2-day lead time period, the model prediction would be worse. The model performance in 

forecasting flow after extreme rainfall events using these simple modeling approaches is further 

recommended, such as in June of 2013 when extremely high flows at Calgary (e.g., 1700 m3/s) was 

recorded. As models were calibrated with 21 years of data (1980–2000), they reflected the average 

environmental conditions that occurred in our study area and could not deal with unusual scenarios.  

In order to reduce some of the variability that was not accounted for, a rainfall–runoff component would 

be worthwhile to consider. However, simply adding a rainfall–runoff term to a regression model was 

found to be inadequate in some studies (e.g., Shamseldin [38] and Rezaeianzadeh et al. [29]). Thus,  

we would suggest incorporating a more complex solution, which could represent the influence of 

rainfall and snowmelt on the flow regime spatially. 

5. Concluding Remarks  

In this paper, we developed simple and intuitive models to forecast 2-day ahead daily average river 

flow in the Bow River at the city of Calgary. These developments included BDMs, which was 

proposed based upon the fact that flows were more or less constant when the contribution of rainfall 

and snowmelt was negligible during winter seasons; and traditional regression models, both LRMs and 

MLRs. Although all these models produced acceptable results, using the regression models that 

included antecedent flow at the gauge station where flows were forecasted (Calgary) and an upstream 

station gave the most promising results. Moreover, significant improvement was not seen by using 

antecedent flows at all three gauge stations. The results from this study, especially results from BDMs, 

recommended the need to incorporate rainfall and snowmelt components to the models in order to 

capture their contribution. Although BDMs appear to be capable of producing satisfactory forecasts for 

the Bow River, its applicability to other rivers needs to be verified as the BDM was proposed based on 

flow characteristics observed from the Bow River. Statistically, all the developed models  

under-estimated flows; while a large discrepancy between observed and forecasted flows was obvious 

for extremely high flows, such as flow in 2005 flood. This implies that the models developed in this 

study did not successfully capture drastic environmental changes, such as high flows resulting from 

extreme rain events. In addition, the results, especially results from BDMs, obtained from this study 

recommended the need to incorporate rainfall and snowmelt components to the models in order to 

capture their contribution for further enhancing the accuracy in the forecast. It is speculated that the 

use of ground observations of meteorological variables might be questionable as the limited ground 

observations normally lack the capability to explain their spatial variation over a large area. Remote 

sensing has the potential to capture the spatial variability of meteorological variables in a watershed 

which makes it very promising in flow forecasting from this point of view. Finally, we believe that our 
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outcomes would build a solid foundation as to compare other models that might be used in the Bow 

River to forecast river flows at the city of Calgary. 
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