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Development of Remote Sensing Based Models for
Surface Water Quality

Theobjectives of thispaperwere todevelop, evaluate, andapply the remote sensingbased
models for Canadian Water Quality Index (CWQI) and turbidity for the Bow River of
Alberta. We used 31 scenes of Landsat-5 TM satellite data to establish the relationship
between the planetary reflectance and themonthly groundmeasureddata for the period
of 5 years (i.e. 2006–2010). The four spectral bands (i.e. blue, green, red, and near infrared)
were used to obtain the most suitable models from 26 different band combinations.
The co-efficients of determination on the basis of red bandwere 0.91 for the CWQImodel
and0.82fortheturbiditymodel.Thebest-fitmodelswerevalidatedwithgroundmeasured
data and found that: 72%of the data showed100%matching for theCWQImodel and83%
of the data for the turbidity model. The Landsat-5 TM based CWQI and turbidity models
were applied on all the scenes to obtain five CWQI classes (i.e. excellent, good, fair,
marginal and poor), and six classes of turbidity (i.e. 0–10 NTU, 10–20 NTU, 20–30 NTU,
30–40 NTU, 40–50 NTU, >50 NTU). On the basis of percentages obtained for CWQI and
turbidity classes, theranksofyears in termsofwaterquality frombest toworstwere:2009,
2006, 2008, 2010, and 2007 respectively. The variation of river water quality in different
years of interest was associated with the climatic changes. The most deteriorated water
qualitynoted intwonatural sub-regions includedmixedgrassanddrymixedgrass,which
could be related to irrigation-based farming.
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1 Introduction

Water extends approximately 71% of earth’s surface and it is also
imperative for the existence and sustainability of living organism on
the earth surface [1]. The freshwater is just 2.5% of the earth’s water.
About 0.3%of freshwater is found in rivers, lakes, and atmosphere [2].
In general, the understanding of the water quality plays a critical
role prior to utilize for various purposes including drinking [3]. In
this paper, we opted to understand the surface water quality for the
Bow River, which is amajor river in the Canadian province of Alberta
having a total length of 587km, and amain source of drinking water
for many communities of the province [4].
The surfacewaterqualityof theBowRiver ismeasuredeverymonthat

three fixed sampling sites (i.e. Carseland, Cluny, and Ronalane) for
different water quality variables using the traditional methods. In
general, thesemethods provide accuratemeasurement. However, these
may not be feasible means to sample the entire river due to the huge
involvement of labor and cost. Currently, the measured data of water

quality variables at the sampling sites of the BowRiver are grouped into
five classes (i.e. excellent, good, fair, marginal and poor) using the
framework of Canadian Water Quality Index (CWQI: see details in
Section 2.5) [5]. These classes are obtained on the basis of fixed-point
locations,whichdonotrepresentthespatialdynamicsoftheentireriver.
In another study, we classified the surface water quality of major

rivers of Alberta on the basis of clusters. We observed higher
(deterioratedwater quality) clusters (i.e. 4 and 5) for the rivers during
the growing season (April 1–September 30) as compared to lower
clusters (i.e. 1, 2, and 3) in winter months (Oct 1–March 31). During
the growing season, the snowmelt wash various materials from the
land surface into the rivers due to anthropogenic activities related
to different types of land use/cover. Turbidity was found to be a
dominant parameter associated with the deterioration in water
quality during the growing season [6]. On this basis, we considered
turbidity separately besides CWQI in this study. For the Bow River,
the turbidity is measured at fixed sampling location, which does not
represent the mean turbidity for the whole water body [7].
In order to address the spatial variability inwater quality real time

data, remote sensing-based methods were found to be alternative
and efficient ones [8–10]. The remote sensingmethods are suitable to
analyze: (i) spatial variability over a large geographic area, (ii)
temporal trends over certain periods of interests, and (iii) the
conditions of the water bodies in remote areas. In remote sensing,
optical remote sensors are used for monitoring the water quality-
related variables. The most commonly used sensors include the use
of Landsat-7 ETM [11, 12], Landsat-5 TM [13, 14], MODIS [15], NOAA
AVHRR [16], and SPOT HVR [17] among others. In most of the
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instances, the spectral bands used in these studies included blue (B),
green (G), red (R), and near infrared (NIR) [11–17]. The observed
planetary reflectance from these bands was used to study water
quality variables including suspended sediment, turbidity, Secchi
disk depth, and chlorophyll-a [12, 13, 18, 19].
In another study, we classified and analyzed the surface water

quality for twelve major rivers of Alberta. We developed a surface
water quality classification system using principal component
analysis, total exceedance model and clustering technique. From
principal component analysis, we identified seven major principal
components, which were the indicators of watershed geology,
mineralization, and anthropogenic activities related to land use/
cover. The principal components were used to identify the dominant
parameters. The normalized data of dominant parameters were used
todevelopa total exceedancemodel. The exceedance valueswereused
to determine the patterns for the development of five clusters. The
water quality deteriorates as the cluster number increased from
cluster 1 to cluster 5. The clusters showed reasonably strong
agreements (i.e. 80–90%) against the classes of CWQI. The dominant
clusters during the growing and winter seasons were used for the
spatial and temporal patterns of the surface water quality of rivers [6].
In the present study, we have tested remote sensing-basedmethods

for acquiring CWQI and turbidity classes for assessing both spatial
and temporal dynamics of the Bow River. The specific objectives of
this paper are to: (i) develop and evaluate remote sensing based
models to acquire CWQI classes using the planetary reflectance of
Landsat-5 TM and ground measured data, (ii) develop and evaluate
remote sensing basedmodels to retrieve turbidity using the planetary
reflectance of Landsat-5 TM and in situ data, (iii) apply the selected
models to classify the source waters of the Bow River into CWQI and
turbidity classes for spatial and temporal analysis, and (iv) study the
impact of natural sub-regions on Bow River water quality.

2 Materials and methods

2.1 Study area

The Bow River originates from Bow Glacier located on the north of
Lake Louise in Alberta. It flows in southeastern direction andmerges
with Oldman River to make South Saskatchewan River. The Bow
River is surrounded by three natural regions including Grassland,
Parkland, and Rocky Mountain. These regions are classified into six
natural sub-regions (i.e. dry mixed grass, mixed grass, foothills
fescue, foothills parkland, montane, and sub-alpine) as shown in
Fig. 1. For these sub-regions, the range for: (i) the estimated length of
the Bow River flowing through each natural sub-region is from 39 to
171 km, (ii) the mean annual temperature is from�0.1 to 4.4°C, and
(iii) the mean annual precipitation is from 333 to 755mm as given
in Tab. 1. The main vegetation type for each of the sub-regions is
also mentioned in Tab. 1. The drainage area for the Bow River is
25 000 km2 [4]. The major municipality along the river is the City of
Calgary (i.e. having a population of 1 096 833 according to 2011
census), which receives drinkingwater from this river [20]. Themean
annual flow of the river near Calgary is 91.1m3/s [21]. The water
flow is controlled by two dams (Bearspaw Dam and Ghost Dam)
constructed on the Bow River for the supply of electricity to the City
of Calgary [22]. The surface water of Bow River allocated for various
purposes include: (i) 71% for irrigation, (ii) 18% formunicipal, (iii) 4%
for watermanagement, (iv) 2% formanagement of wildlife, (v) 2% for
dewatering, and (vi) 2% for commercial [23].

2.2 Satellite and water quality data

We used 31 scenes of Landsat-5 TM multispectral image data for
the different dates during the period 2006–2010 as listed in Tab. 2.
The size of each scene was 185 km� 172 km. The spectral bands
which were used in this study were (i) blue, (ii) green, (iii) red, and
(iv) NIR. The spatial resolution for each of these spectral bands
was 30m. The raw satellite data was downloaded from the United
States Geological Survey Global Visualization Viewer in GeoTIFF
format with the Level 1T correction [24]. The Level 1T is the standard
terrain correction in which systematic radiometric and geometric
accuracy is provided using the ground control points and the
topographic accuracy is obtained by using the digital elevation
model [25]. The scenes of Landsat-5 TM were selected on the basis
of the least cloud cover, least snow, and closeness to the
sampling days. In total, we used ground measured data for 37 days
at three sampling locations of the Bow River in 2006–2010 to
develop and validate models using the planetary reflectance of 31
scenes of Landsat-5 TM. The sampling locations and the dates for the
ground water quality data and Landsat-5 TM scenes are given in
Tab. 2.

Figure 1. Natural sub-regions for the Bow River of Alberta.

Table 1. Characteristics of natural sub-regions for Bow River

Natural sub-region
Bow River
length (km)

Mean annual
temperature (°C)

Mean annual
precipitation (mm) Main vegetation

Dry mixed grass 171 4.2 333 Grasslands and shrublands
Mixed grass 107 4.4 394 Agriculture and native grassland
Foothills fescue 87 3.9 470 Mountain perennial and wheat grasses
Foothills parkland 63 3.0 517 Aspen forests and grasslands
Montane 120 2.3 589 Aspen, pine, fir and spruce forests

and grasslands
Sub-alpine 39 �0.1 755 Mixed conifer forests
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The water quality data were obtained from Alberta Environment
and listed in Tab. 3 with Alberta River Water Quality Index
objectives [26–29].

2.3 Image processing

The satellite scenes were processed to make them workable for the
purpose of this research. The operations applied for processing are
briefly explained in the following sub-sections:

2.3.1 Conversion of digital numbers into spectral
radiance

In the first step, we converted the raw digital numbers of all the
Landsat-5 TM images into spectral radiance using Eq. (1) [25] as

follows:

Ll ¼ Lmax l � Lmin l

DNmax � DNmin

� �
� ðDN� DNminÞ

� �
þ Lmin l ð1Þ

whereLl¼ spectralradianceatthesensor’saperture(Wm�2 sr�1mm�1),
DN¼quantized calibrated pixel value, Lmin l¼ spectral radiance that
is scaled to QCALMIN (Wm�2 sr�1mm�1), Lmax l¼ spectral radiance
that is scaled to QCALMAX (Wm�2 sr�1mm�1), DNmin¼minimum
quantized calibrated pixel value (corresponding to Lminl) in DN, and
DNmax¼maximum quantized calibrated pixel value (corresponding
to Lmaxl) in DN.
The values of Lmin l, Lmaxl, DNmin and DNmax in Eq. (1) were

obtained from the metadata files.

Table 2. Data used for development and evaluation of models for CWQI and turbidity during 2006–2010

River water sampling Landsat-5 TM scene

No. Site Date No. Acquisition date Path Row

1 Carseland 26-Apr-06 1 24-Apr-06 41 25
2 Cluny 25-Apr-06
3 Carseland 23-May-06 2 17-May-06 42 24
4 Carseland 12-Jul-06 3 13-Jul-06 41 25
5 Cluny 12-Jul-06
6 Ronalane 25-Jul-06 4 22-Jul-06 40 25
7 Carseland 31-Aug-06 5 30-Aug-06 41 25
8 Cluny 31-Aug-06
9 Ronalane 19-Sep-06 6 24-Sep-06 40 25
10 Carseland 23-Nov-06 7 18-Nov-06 41 25
11 Cluny 23-Nov-06
12 Carseland 19-Jun-07 8 21-Jun-07 42 24
13 Ronalane 25-Jun-07 9 23-Jun-07 40 25
14 Cluny 26-Jun-07 10 30-Jun-07 41 25
15 Carseland 23-Jul-07 11 23-Jul-07 42 24
16 Carseland 28-Apr-08 12 29-Apr-08 41 25
17 Carseland 14-May-08 13 15-May-08 41 25
18 Cluny 14-May-08
19 Carseland 17-Jun-08 14 23-Jun-08 42 24
20 Ronalane 16-Jul-08 15 11-Jul-08 40 25
21 Carseland 15-Jul-08 16 18-Jul-08 41 25
22 Ronalane 21-Aug-08 17 28-Aug-08 40 25
23 Ronalane 14-Oct-08 18 15-Oct-08 40 25
24 Carseland 26-May-09 19 25-May-09 42 24
25 Ronalane 25-May-09 20 27-May-09 40 25
26 Carseland 15-Jun-09 21 10-Jun-09 42 24
27 Carseland 20-Jul-09 22 21-Jul-09 41 25
28 Carseland 17-Aug-09 23 22-Aug-09 41 25
29 Cluny 17-Aug-09
30 Cluny 15-Sep-09 24 7-Sep-09 41 25
31 Carseland 14-Sep-09 25 14-Sep-09 42 24
32 Carseland 19-Oct-09 26 25-Oct-09 41 25
33 Cluny 21-Apr-10 27 19-Apr-10 41 25
34 Carseland 19-Apr-10 28 26-Apr-10 42 24
35 Carseland 10-May-10 29 12-May-10 42 24
36 Carseland 15-Jul-10 30 15-Jul-10 42 24
37 Ronalane 18-Aug-10 31 18-Aug-10 40 25

Table 3. Alberta River Water Quality Index objectives for 17 variables [26–29]

Variable Objective Variable Objective Variable Objective

Water temperature 15°C Total phosphorus 0.05mg/L Sodium 200mg/L
Dissolved oxygen 6.5mg/L Total nitrogen 1mg/L Fluoride 1.5mg/L
Turbidity 5 NTU pH 6.5 and 8.5 Fecal coliform 100 CPU/100 mL
True color 15 Pt Co units Total hardness 500mg/L Manganese 0.05mg/L
Dissolved organic carbon 5mg/L Chloride 250mg/L Iron 0.3mg/L
Total dissolved solids 500mg/L SO4 500mg/L

1046 T. A. Akbar et al.

© 2014 The Author. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.clean-journal.com Clean – Soil, Air, Water 2014, 42 (8), 1044–1051



2.3.2 Conversion from spectral radiance to planetary
reflectance

In the second step, the spectral radiance was converted into
planetary reflectance using Eq. (2) [25] as follows:

rr ¼
pLld

2

ESUNlcosus

� �
ð2Þ

where rr¼unitless planetary reflectance, p¼ 3.141592654, Ll¼
spectral radiance at the sensor’s aperture, d¼ earth–sun distance in
astronomical units, ESUNl¼mean solar exo-atmospheric irradi-
ance, and us¼ solar zenith angle (°).
The value of: (i) d was obtained from Science Data Users

Handbook [30], (ii) ESUNl for all bands of TM sensors were obtained
from Chander and Markham [31], (iii) us was obtained from the
formula (i.e. us¼ 90° – sun elevation angle), where the sun elevation
angle was obtained from the metadata file of each satellite images.

2.3.3 Normalized Difference Vegetation Index (NDVI)

Finally,wecalculatednormalizeddifferencevegetation index (NDVI: a
measure of vegetation greenness) using Eq. (3) [32] as follows:

NDVI ¼ rNIR � rR
rNIR þ rR

ð3Þ

whererNIR¼ reflectanceofNIRband, andrR¼ reflectance of redband.
Such NDVI calculations were performed over the Bow River

sampling sites (BOR-1, BOR-2, BOR-3) in all scenes of 37 data records
in order to determine the possible contamination of sampling site
pixels from other landuses (e.g. roads, agriculture, vegetation, and
barren land, etc.). The negative NDVI values (i.e. between 0 and �1)
indicated the presence of water in the pixels whereas positive NDVI
values showed the possible contamination due to other landuses [33].
In case of a positive NDVI value for any sampling site pixel, we
considered the reflectance value of a nearest neighboring water pixel.

2.4 CWQI

Using Eq. (4), we calculated CWQI for all three sampling sites of Bow
River during the period 2006–2010 using the measured data of
seventeen variables on the basis of Alberta RiverWater Quality Index
objectives as given in Tab. 3 [5]:

CWQI ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F21 þ F22 þ F23

q
1:732

0
@

1
A ð4Þ

where F1, F2, F3 are scope, frequency, and amplitude, respectively. The
equations to calculate these three factors are given in Tab. 4. The

quantitative values (i.e. 0–100) obtained fromEq. (4) were divided into
fiveclasses: (i) 95–100¼ 1 (excellent), (ii)80–94¼ 2 (good), (iii) 60–79¼ 3
(fair), (iv) 45–59¼ 4 (marginal), and (v) 0–44¼ 5 (poor) [5]. The CWQI
classes were produced for 37 data records as given in Tab. 2.

2.5 Models for CWQI and turbidity from planetary
reflectance of Landsat-5 TM data

On the basis of literature review for the relationship of bands with the
variables ofwater quality,wedeveloped26 individual empiricalmodels
in determining both CWQI and turbidity as a function of the spectral
bandsofB,G,RandNIR [10–18].Thespecific inputsof thesemodelswere:
B, G, R, NIR, G/B, B/R, R/B, NIR/B, R/G, NIR/G, BþG, BþR, BþNIR, GþR,
GþNIR, RþNIR, BþGþR, BþGþNIR, GþRþNIR, BþGþRþNIR,
(B/NIR)þG, (B/NIR)þB, (B/R)þR, (B/R)þG, (B/R)þB, and (NIR/B)þNIR.
We used regression analysis technique to obtain the quantitative
relationshipbeweenthesatellitebasedplanetaryreflectancesandwater
qualityvariablestodeveloptheempiricalmodels [8–18].Weused23data
records (i.e. Landsat-5TMaswellas thegrounddata) forthedevelopment
of models to obtain CWQI classes and turbidity from the planetary
reflectance. The remaining 14 data records were used to validate the
selected best models. In all these models, CWQI and turbidity were the
dependentvariableswhereas thebandswere the independentvariables.
CWQI and turbidity were plotted on the vertical axis and bands on the
horizontal axis. Eachmodel represents: (i) a uniqueband formula, (ii) an
intercept, and (iii) a slope. The intercept of dependable variables is the
distance from the origin to the point where the line crosses the vertical
axis. Slope is the amount of change for dependent variables
corresponding to one-unit increase in band formula. The intercept
and slope were calculated using the least square regression method to
obtain a line of best fit. The strength of correlations between
the planetary reflectance and in situ turbidity and CWQI for the
development and validation of the models were obtained based on
co-efficient of determination (r2) [34]. On the basis of r2 values, we
identified the significant empirical models for CWQI and turbidity.

2.6 Spatial and temporal analysis for the Bow
River

We subset all the scenes of interest to extract the Bow River. TheNDVI
was calculated for the Bow River to extract the pixels with water and
remove the pixels contaminated with other land use types. We
selected the most suitable empirical models for CWQI and turbidity
on the basis of r2 values. The selected CWQI model was applied on 31
scenes of Landsat-5 TM to obtain the spatial distribution for five
classes (i.e. as described in Section 2.4) along the Bow River. Similarly,
the selected turbiditymodel was applied on these scenes to obtain the
spatialdistributionof turbidity. The turbidityvaluesweredivided into

Table 4. Equations used for calculation of CWQI and identifying classes using the data

F1ðScopeÞ ¼ Number of failed variables
Total number of variables

� �
� 100 F2ðFrequencyÞ ¼ Number of failed tests

Total number of tests

� �
� 100

Excursion i ¼ Objective j
Failed test value i

� �
� 1 Excursion i ¼ Failed test value i

Objective j

� �
� 1

NSE ¼
Pn

i¼1 excursion i
Number of tests

� �
F3ðamplitudeÞ ¼ NSE

0:01NSEþ 0:01

� �
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six classes which are: (i) 0–10 nephelometric turbidity units (NTU), (ii)
10–20 NTU, (ii) 20–30 NTU, (iv) 30–40 NTU, (v) 40–50 NTU and (vi) >50
NTU [35]. CWQI classes could vary from 1 to 5 with the increase in the
concentrationsof variables. For example lower turbidity classesmight
indicate lower clusternumberswhereashigher turbidity classes could
represent higher cluster numbers. For both turbidity and CWQI, the
percentage accumulated by each class was obtained by dividing the
pixels of each class by the total pixels of all classes during each year of
interest during 2006–2010. Finally,we overlaidmaps for CWQI classes
for the selected period on the natural sub-regions (i.e. Fig. 1).

3 Results and discussion

3.1 Empirical models for determining CWQI
classes

We developed 26 empirical models for determining CWQI classes as
given in Tab. 5. These empirical models could be used to obtain the
spatial distribution of CWQI classes using the planetary reflectance
of bands for any periods. The slopes in CWQI were the constant
numbers, whichweremultiplied with the band formulae (e.g. 28.072
in model 1 of Tab. 5). The intercepts are the positive or negative
number in each model (e.g. þ0.5785 in model 1 of Tab. 5). Please see
other slopes and intercepts for model no. 2 to model no. 26 in Tab. 5.
The range of r2 for all empirical models was from 0.01 to 0.91. The
correlation coefficients<0.50 were considered weak due to which we
regarded only themodelswith r2> 0.50 (model no.1 tomodel no.14 in
Tab. 5) as significant [36]. Among these significant models, r2 was
higher (i.e. 0.73–0.91) for themodels with red band (e.g.model no. 1 to
model no. 8 in Tab. 5) whereas it was lower (i.e. 0.54–0.72) in the
models without red band (e.g. model no. 10 tomodel no. 14 in Tab. 5).

The best model was the use of the spectral band R (i.e. r2¼ 0.91, see
model no. 1 in Tab. 5). The scatter plot and deviation plot of this
model are shown in Fig. 2a and b. The figure shows that 10 data
records matched 100% of the modeled values, whereas four data
records had a deviation of 1 from the modeled values (Fig. 2b). The
result of this validation indicates the usefulness of this model for
obtaining CWQI from the reflectance of the red band.
Most of the previous studies showed the development of

remote sensing based models for individual water quality variables,
e.g. [8–18].Alimitednumberofstudiesshowedtheapplicationofremote
sensing for the development of indices [37, 38]. Composite pollution
index was developed using band 1 (0.402–0.422mm), band 2 (0.433–
0.453mm), band 3 (0.480–0.500mm), and band 4 (0.500–0.520mm) to
obtain thefive classes ofwater quality. The co-efficientof determination
for thecompositepollutionindexwas0.93 [37]. Inanotherstudy, remote
sensingbasedwaterquality indexwasdevelopedonthebasisofblueand
greenbands.Ther2was0.82forthiswaterqualityindex[38]. Inourstudy,
we foundthat themodelswith: (i) blueandgreenbands (e.g.model13 in
Tab. 5), (ii) green band (e.g.model 10 in Tab. 5), (iii) blue band (e.g.model
19 in Tab. 5) showed r2 of 0.57, 0.71, and 0.30, respectively. It was
also noticed that the models having blue and green band with:
(i) red band (e.g. model 7 in Tab. 5), and (ii) red and NIR bands (e.g.
model 6 in Tab. 5) showed higher values for r2 (i.e. 0.75 and 0.76,
respectively).

3.2 Empirical models for obtaining turbidity
classes

Wecreated 26 empiricalmodels for turbidity as given in Tab. 6, which
could be used to obtain the spatial distribution of turbidity using the
planetary reflectance of bands for a period of interest. The slopes and

Table 5. Models developed for mapping spatial distribution of CWQI classes for the Bow River using the first four spectral bands (i.e. blue, green,

red, and NIR) of Landsat-5 TM satellite data

Model no. Model r2 Model no. Model r2

1 28.072 Rþ 0.5785 0.91 14 15.044 (BþNIR)þ 0.2322 0.54
2 14.816 (GþR)þ 0.1715 0.84 15 �0.861 (B/R)þ 3.6939 0.36
3 16.031 (RþNIR)þ 0.6253 0.82 16 �0.8493 [(B/R)þG]þ 3.7451 0.33
4 10.789 (GþRþNIR)þ 0.2845 0.81 17 �0.8478 [(B/R)þR]þ 3.7247 0.32
5 5.3855 (R/G)� 1.6506 0.77 18 �0.8108 [(B/R)þB]þ 3.6895 0.32
6 8.2823 (BþGþRþNIR)� 0.0287 0.76 19 17.588 Bþ 0.6427 0.30
7 10.241 (BþGþR)�0.1374 0.75 20 0.982 (R/B)þ 1.648 0.17
8 14.834 (BþR)� 0.0091 0.73 21 �0.2439 [(B/NIR)þG] 2.8986 0.12
9 16.705 (GþNIR)þ 0.2038 0.72 22 �0.2427 [(B/NIR)þB]þ 2.8986 0.12
10 29.187 G� 0.103 0.71 23 1.0725 [(NIR/B)þNIR]þ 1.7535 0.11
11 10.852 (BþGþNIR)� 0.0855 0.65 24 1.7162 (NIR/G)þ 1.4118 0.10
12 30.554 NIRþ 0.9825 0.58 25 0.9607 (NIR/B)þ 1.8524 0.08
13 13.808 (BþG)� 0.1391 0.57 26 0.2513 (G/B)þ 2.0777 0.01

Figure 2. (a) Development, and (b) evaluation of most
suitable model for obtaining CWQI classes using the
surface reflectance of red band for the Bow River.
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intercepts for the empirical models (i.e. model no. 1 to model no. 26)
of turbidity are given in Tab. 6. The range of r2 for the models was
from 0.01 to 0.82. Similar to CWQI empirical models, we considered
only the models with r2> 0.50 (model no. 1 to model no. 12 in Tab. 6)
as significant and the allmodels with r2< 0.50wereweak [36]. Similar
to CWQI models, r2 was higher (i.e. 0.66–0.82 for the considerable
models with red band (e.g. model no. 1 to model no. 8 in Tab. 6),
whereas it was lower (i.e. 0.52–0.66) for the models without red band
(e.g. model no. 9 tomodel no. 12 in Tab. 6). Among all themodels, the
best model was the use of the spectral band R (i.e. r2¼ 0.82, seemodel
no. 1 in Tab. 6) and its development is also described in Fig. 3a. We
evaluated the turbidity model (i.e. model no. 1 given in Tab. 6) using
the validation data of the ground measured turbidity data as shown
in Fig. 3b. The validation indicated a strong correlation of modeled
turbidity with the measured turbidity by giving r2¼ 0.83 which is
even higher as compared to r2 obtained for turbidity model. These
results suggest the usefulness of this model (i.e. model no.1 given in
Tab. 6) for mapping turbidity from Landsat-5 TM satellite data for the
Bow River. The red band also correlated well with in situ turbidity in
other studies. r2 values in these studies were 0.78, 0.76, and 0.57,
respectively [7, 12, 13].

3.3 Application of models for spatial and temporal
analysis

We applied the best (i) CWQImodel (i.e. model no. 1 in Tab. 5), and (ii)
turbidity determination model (i.e. model no. 1 in Tab. 6) over all 31
scenes of Landsat-5 TM during the period 2006–2010 for generating
the spatial distribution of CWQI and turbidity classes for the Bow
River. The examples of classes for CWQI and turbidity are shown over
a portion of the Bow River in Figs. 4 and 5, respectively. The
percentages for five CWQI classes and six turbidity classes observed

in each year during the period 2006–2010 are given in Tabs. 7 and 8,
respectively. The deteriorated quality of water could be estimated
from the percentages accumulated in each year for the CWQI classes
of 4 and 5. Those were: (i) 2.62% in 2006, (ii) 32.75% in 2007, (iii) 4.77%
in 2008, (iv) 1.46% in 2009, (v) 6.94% in 2010, and (vi) 9.71% during
2006–2010 in average. On this basis, we might rank the years in
order from the best to the worst water quality, such as: 2009, 2006,
2008, 2010, and 2007. Turbidity also showed similar ranks for the
respective years on the basis of percentages for the worst turbidity
class (i.e. >50 NTU). The variation in the water quality for different
years could be related to surface runoff from different amount of
precipitations due to climatic factors like snowmelt and rainfall [6].
The impact of natural sub-regions was reflected on the river water

quality classification in Tab. 9. We found that the prominent CWQI

Table 6. Models developed for mapping spatial distribution of turbidity for the Bow River using the first four spectral bands (i.e. blue, green, red,

and NIR) of Landsat-5 TM satellite data

Model no. Model r2 Model no. Model r2

1 1005 R� 44.608 0.82 14 530.92 (BþNIR)� 55.95 0.47
2 533.51 (GþR)� 59.624 0.77 15 �30.533 (B/R)þ 66.455 0.32
3 567.88 (RþNIR)� 42.301 0.73 16 �30.041 [(B/R)þR]þ67.509 0.29
4 385.17 (GþRþNIR)� 54.932 0.73 17 �30.076 [(B/R)þG]þ 68.198 0.29
5 368.42 (BþGþR)� 70.666 0.69 18 �28.74 [(B/R)þB]þ 66.277 0.29
6 295.94 (BþGþRþNIR)� 66.185 0.69 19 630.78 B� 42.417 0.27
7 187.38 (R/G)� 120.43 0.66 20 32.406 (R/B)� 4.4814 0.13
8 531.38 (BþR)� 65.694 0.66 21 �7.1225 [(B/NIR)þG]þ 34.532 0.07
9 1059.2 G� 70.18 0.66 22 �7.1171 [(B/NIR)þB]þ 34.604 0.07
10 595.17 (GþNIR)� 57.657 0.65 23 33.057 [(NIR/B)þNIR]þ 0.1987 0.08
11 387.37 (BþGþNIR)�68.127 0.59 24 51.506 (NIR/G)� 9.6089 0.07
12 516.81 (BþG)� 73.428 0.52 25 28.779 (NIR/B)þ 3.641 0.05
13 1062.7 NIR� 28.796 0.49 26 6.8317 (G/B)þ11.017 0.01

Figure 3. (a) Development, and (b) evaluation of most
suitable model for obtaining turbidity using the surface
reflectance of red band for the Bow River.

Figure 4. An example of CWQI classes for�14km long portion of the Bow
Riverobtainedbyapplicationof themost suitableempiricalmodel (i.e.model
no. 1 in Tab. 4) on Landsat-5 TM satellite image dated 21 June 2007.
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classes were (i) class 3 or class 4 for mixed grass, and (ii) class 3 for
dry mixed grass. The deteriorated water quality for the Bow River in
both of these natural regions could be related to irrigation-based
farming [39]. During the summer months, we observed class 3
and class 4 for Bow River in foothills parkland, foothills fescue and
montane. This deterioration in the Bow river water quality in these
three sub-regions could be due to till cropping (i.e. short-season
crops) [39].

4 Concluding remarks

In this research, we developed empirical models for Canadian Water
Quality Index (CWQI) and turbidity using the planetary reflectance
data from the first four bands (i.e. blue, green, red, and NIR) of
Landsat-5 TM for the Bow River of Alberta. The data utilized for the
development and evaluation of these models included 31 scenes of
Landsat-5 TM multispectral images, CWQI classes based on the
monthlymeasured ground data for 17 water quality variables, and in
situ monthly measured turbidity data for a period of five years (i.e.
2006–2010). For CWQI, we created 26 models of which 14 were
significantbasedontheco-efficientofdetermination (r2) ranging from
0.54to0.91. Likewise for turbidity,wedeveloped26modelsofwhich12
were significant based on r2 ranging from 0.52 to 0.82. For both CWQI
and turbidity, the models with highest r2 (i.e. 0.91 and 0.82,
respectively) were evaluated and applied on all 31 scenes to obtain
classes for CWQI and turbidity for the Bow River during 2006–2010.
Theredbandwasfoundtobethemost importantas itdominatedeight
CWQImodelsandeightturbiditymodelswithhigherrangeof r2values
with its solitary contribution in the bestmodels. The turbidity classes
showed similar patterns of water quality in each year of interest as
exhibitedbytheCWQIclasses. Theriverwaterqualitywasdeteriorated
due to agricultural activities and climatic factors. The limitation of
using 30m resolution satellite data was the contamination of river
water pixels caused by influence of nearby land covers/uses. To
overcome this in our research,wemadeuse ofNDVI to recognize such
pixels and eliminate them from the images.
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