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Abstract. This paper describes a procedure for mapping long-term average, growing season-
accumulated growing degree days at an enhanced spatial resolution of 28.5 m. GDD-product 
enhancement is based on augmenting a previously developed 1 km resolution map of GDD 
described in Hassan et al. [J. Applied Remote Sens., 1, 013511, 12p (2007)] using data from a 
series of scene- and date-specific Landsat-7 ETM+ images (at 28.5 m resolution) from the 
1999-2002 data collection period and a chronological series of standard MODIS 16-day 
composites of enhanced vegetation index (EVI; at 250 m resolution) spanning the 2003-2005 
growing periods (April-October). Surface reflectances from the Landsat-7 ETM+ images are 
used to derive fine-scale estimates of EVI, which are then transformed into long-term 
averages by taking into account growing-season specific, temporal trends in the series of 
MODIS-EVI images. As values from the 8-day accumulated GDD and 16-day composites of 
EVI have been shown to be strongly correlated, a new data-fusion method based on the mean 
and instantaneous values of fine-grain long-term average EVI is used to augment the 
resolution of the initial GDD map. As a demonstration, we apply the procedure to satellite and 
climate station data for the Canadian Province of Nova Scotia. 

Keywords: enhanced vegetation index, data fusion, growing degree days, Landsat-7 ETM+, 
MODIS, statistical properties 

1 INTRODUCTION 
Growing degree day (GDD) is an air temperature-based index commonly used in plant growth 
and crop production modeling [1] mainly because of temperature’s role in regulating plant 
processes, such as evapotranspiration, photosynthesis, plant respiration, in-plant water and 
nutrient movement, and, ultimately, plant development, phenology, and growth. GDD can be 
defined here as the growing-season (April-October) accumulation of the difference between 
the daily mean air temperature and a constant temperature threshold, below which plant 
growth ceases [2].  

In an earlier paper [3], we described an approach to mapping a 30-year average of 
growing-season accumulated GDD (1971-2000) at spatial resolutions of 250 m, mostly as a 
function of MODIS-based products of surface temperature (at 1 km resolution) and enhanced 
vegetation index (EVI) concurrent with the 2003-2005 growing periods. In spite of the 
regional importance of the 250 m resolution map of GDD, higher resolution maps with spatial 
resolutions < 30 m are in high demand for still greater understanding of land-surface processes 
and for ecosystem management applications at sub-hectare scales. As a result of this demand, 
the focus of this paper is to develop a methodology to enhance the spatial resolution of GDD 
mapping by fusing high resolution (28.5 m), scene- and date-specific Landsat-7 ETM+-
product data with lower resolution (250 m), but more frequently acquired MODIS data.  
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Since growing-season based estimates of 8-day accumulated GDD and 16-day composites 
of EVI (see Table 1, for definitions) are strongly correlated [3], an initial step in our approach 
is to generate EVI from Landsat-7 ETM+ surface reflectances using procedures described in 
Huete et al. [4]. Although the procedures in [4] are applied specifically to processing MODIS 
data in the evaluation of EVI, the same procedures have been applied to Landsat data [e.g., 4-
7] due to the blue (B), red (R), near infrared (NIR) bands (in the definition of EVI) near-
similar bandwidth characteristics (see Table 2).  

Data fusion between Landsat-7 ETM+ and MODIS image products is not original, as 
recently demonstrated by [9] with the fusion of surface reflectances to predict fine-scale, daily 
images of surface reflectance. Our approach is different from other published data fusion 
approaches, as our specific objective is to fuse images representing two very different, albeit 
related, ecological variables, i.e., EVI and GDD. For demonstration, we apply our procedure 
to remote sensing and GDD data collected over the eastern Canadian Province of Nova Scotia 
(NS), geographically located between latitudes 43o 27' N to 46o 01' N and longitudes 59o 38' 
W to 66o 16' W. 

2 STUDY AREA AND DATA REQUIREMENTS 
Canada is divided into fifteen terrestrial ecozones, generalized land-surface categories based 
on similar soil formation, climate, and landuse cover types described in the National 
Ecological Framework for Canada [10]. The Province of NS falls in the Atlantic Maritime 
Ecozone of eastern Canada (Fig. 1a), and is characterized by a forest-dominated landscape.  

Fig. 1. Location of the Atlantic Maritime ecozone of eastern Canada (a), and a 
mosaic of Landsat-7 ETM+ images at 28.5 m resolution covering the Province of 

Nova Scotia (b). 
 
The landscape is distinguished by its temperate evergreen-deciduous Acadian forests, where a 
mixture of deciduous species, such as maple (Aceraceae spp.), beech (Fagus grandifolia 
Ehrh.) and birch (Betulaceae spp.), and coniferous species, such as spruce (Picea spp.) and 
balsam fir [Abies balsamea (L.) Mill.] dominate. Forests occupy about 79% of the province’s 
landbase (Natural Resources Canada; http://cfs.nrcan.gc.ca/sof/sof06/profilesNS_e.html, last 
visited Jun. 2007). Provincial climate is largely influenced by the region’s proximity to the 
Bay of Fundy in the north and Atlantic Ocean to the south and east of the province. The 

(a)

Atlantic Maritime ecozone The yellow boundary
represents 

Province of Nova Scotia (NS)

(b)

http://cfs.nrcan.gc.ca/sof/sof06/profilesNS_e.html
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province experiences a cool-moist climate with an annual mean temperature and total 
precipitation range of 3.5-6.5°C and 900-1500 mm, respectively. 

The 28.5 m resolution Landsat-7 images used in this study were acquired from the 1999-
2002 data collection period from the Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS) project, i.e., http://ledaps.nascom.nasa.gov/ledaps_NorthAmerica.html, 
last visited June 2007. Table 1 provides a complete list and description of the data employed 
in the study. The 250 m resolution map of GDD developed in [3] will serve as a comparison 
to the spatially-enhanced map of GDD generated from this study. 

Table 1. Description of the data employed in this study 

Data type Description 

Landsat-7 ETM+ 
(surface 

reflectance 
products) 

Ten scene-specific images of surface reflectance for the blue (B), red (R), and near
infrared (NIR) bands covering the entire Province of NS (Fig. 1b). The path (P), row 
(R), and acquisition dates of the acquired scenes are as follows: 
 
Image 01. P6 R27 [19 Jun. 2002], 02. P6 R28 [22 Aug. 2002], 03. P6 R29 [22 Aug. 
2002], 04. P7 R28 [09 May 2002], 05. P7 R29 [04 Jun. 2000], 06. P8 R28 [13 Sep. 
1999], 07. P8 R29 [13 Sep. 1999], 08. P8 R30 [13 Sep. 1999], 09. P9 R29 [18 Jun. 
2000], 10. P9 R30 [18 Jul. 2000] 
              

MODIS-based 
EVI products 
(MOD13Q1) 

Thirty nine 16-day composites of EVI were acquired from NASA at 250 m resolution.
The composites were derived by applying either the constrained-view angle-maximum 
value composite or maximum value composite algorithm (refer to [4], for detail). The
39 composites covered the 07 April-31 October, 2003 and 2005, and 06 April-30 
October, 2004 April-October growing periods. 
 

MODIS-derived 
product (1 km 
resolution map 

of GDD) 

Derived from MODIS-based 8-day composites of surface temperature at 1 km 
resolution for the growing periods of 2003-2005 along with tower point-based 
measurements of emitted infrared radiation (refer to [3], for additional detail). 
 

MODIS-derived 
product (250 m 
resolution map 

of GDD) 

Derived from the 1 km resolution map of GDD. The product was generated by
employing MODIS-based standard 16-day composites of EVI at 250 m resolution for 
the 2003-2005 period and 30-year mean point-calculations of GDD (for the 1971-2000 
period) for 101 climate stations [3]. 

3 METHODOLOGY 
Figue 2 shows a schematic diagram for generating a 30-year average map of GDD at 28.5 m 
resolution from an initial GDD map at 1 km resolution [3]. The procedure is divided into three 
main components, namely (i) computing EVI from Landsat-7 ETM+ surface reflectances of 
the B, R, and NIR bands, and transforming day-specific Landsat-7 ETM+-derived EVI values 
to long-term averages using MODIS-derived values for the 2003-2005 period (addressed in 
Section 3.1, below), (ii) fusing long-term average EVI values with the 1 km resolution map of 
GDD, and (iii) generating a GDD map at enhanced resolution for the current normal period 
(1971-2000). 
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Fig. 2. Procedural diagram for generating a long-term map of GDD at 28.5 m 
resolution for the 1971-2000 current normal period. 

3.1 Long-term average EVI from Landsat-7 ETM+ data 
Since Landsat-7 ETM+ surface reflectances were already corrected for atmospheric 
distortions [8], we proceeded by determining EVI values for each Landsat-7 ETM+ scene with 
 

1  B  x 5.7R  x 6  NIR
RNIR5.2EVI

+ρ−ρ+ρ
ρ−ρ

=  , (1) 

 
(after [4]), where ρ is the atmospherically-corrected surface reflectance for B, R, and NIR 
bands, respectively. The application of Eq. (1) for computing EVI using Landsat-7 ETM+ 
images would be considered reasonable, as surface reflectances measured with the Landsat-7 
ETM+ and MODIS sensors were generally comparable [8]; only showing minor differences, 
despite some variation in sensor bandwidths (Table 2).  

Table 2. Landsat-7 ETM+ and MODIS sensor bandwidths for B, R, and NIR bands. 

Band Landsat-7 ETM+  
(µm) 

MODIS  
(µm) 

B 0.450-0.520 0.459-0.479 
R 0.630-0.690 0.620-0.670 

NIR 0.780-0.900 0.841-0.876 
 
To calculate long-term average EVI at 28.5 m resolution, we used the following steps,  
(i) Using MODIS-based EVI products, we computed pixel-level averages of growing-

season EVI for the 2003-2005 growing periods at 250 m resolution. Following that 
we computed a single EVI value (i.e., MODISEVI ) by spatially averaging growing-
season pixel EVI averages;  

(ii) We then calculated Landsat-7 ETM+ scene-specific spatial averages of EVI (one for 
each scene); and 

(iii) For each Landsat-7 ETM+ image, pixel-level averages of EVI were obtained using 

Landsat-7 ETM+ surface 
reflectance products

(blue, red, and near infrared bands)

EVI values
at 28.5 m resolution

Long-term average GDD at 28.5 m resolution

[MOD13Q1]: 16-day 
MODIS-based EVI products 

at 250 m resolution 

GDD map 
at 

1 km  resolution 

Long-term average EVI values
at 28.5 m resolution

Data fusion

 



Journal of Applied Remote Sensing, Vol. 1, 013539 (2007)                                                                                                                                    Page 5

 
( )MODISETMETM EVI- )i(EVI )i(EVI)i(termLongEVI −=− , (2) 

 
where i is the scene number (1-10), termLongEVI − the long-term average EVI at 

28.5 m resolution (expected outcome), ETMEVI  instantaneous values of EVI for 

individual pixels based on Landsat-7 ETM+ image data, and ETMEVI  the average 

Landsat-7 ETM+ scene-specific EVI values. MODISEVI  in Eq. (2) represents a 
regional value of EVI for the 2003-2005 growing periods [Step (i), above].  

 
As the estimated EVI values derived from MODIS and Landsat-7 ETM+ data have near-
similar magnitude [4], we can apply the difference between the average EVI values in Eq. (2) 
(i.e, ETMEVI  and MODISEVI ) as a correction to the Landsat-7 ETM+ -based instantaneous 
values of EVI to yield long-term mean values of EVI at 28.5 m resolution.  

3.2 Data fusion 
In order to enhance the spatial resolution of the GDD map, we developed a new data fusion 
technique. This consisted of generating an artificial image plane (AI) which took into account 
the statistical properties of Landsat-7 ETM+-based termLongEVI −  within a 3 cell × 3 cell 

moving window, i.e.,  
 

meanEVI
insEVI

AI = ,  (3) 

 
where insEVI  is the instantaneous value of EVI and meanEVI is the mean of 

termLongEVI −  within the moving window. In theory, AI is an index that describes the 

relation of an instantaneous value of EVI to the mean value of EVI of surrounding pixels, and 
functions as a weight in the calculation of GDD at 28.5 m resolution, i.e., 
 

km  1GDD x AIm  5.28GDD = , (4) 

 

where km  1GDD represents the initial GDD map derived from MODIS-surface temperature 

data at 1 km resolution [3].  

3.3 Long-term average GDD at 28.5 m resolution for the current normal period 
The GDD map produced using Eq. (4) was modified by setting a lower and upper limit to the 
GDD values generated. GDD values ≤ 800 were set to 800 as these values were typically 
observed over water and along the coastal border of the province. Values ≥ 2500 were set to 
2500 as these values were mostly associated with urbanized centres with restricted plant cover 
and elevated surface heating. These limits were justified given the focus was to study 
temperature and GDD patterns over vegetated surfaces. As in [3], we applied a constant 
correction of -511 to the three-year GDD map (2003-2005) to generate a final, GDD map at 
28.5 m resolution for the 1971-2000 normal period. This constant offset was determined by 
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comparing GDD values estimated from 101 Environment Canada climate stations for the 
current normal period to GDD point-estimates estimated from 2003-2005 MODIS data. 

4 RESULTS AND DISCUSSION 
Figure 3 shows the interannual variation of regionally-averaged EVI values (at 250 m 
resolution) determined from MODIS data. Strong seasonal influences were borne out when 
the data was fitted with a quadratic function, producing r2-values ≥ 86%.  

Fig. 3. Interannual variation of regionally-averaged MODIS-based EVI values for 
the 2003-2005 period.  

 
Figure 4 shows a sample calculation using our data fusion approach on 2003-2005 

computations. A 997.5 m × 997.5 m pixel-calculation of GDD at 28.5 m resolution provided a 
mean GDD value of 1872 compared with 1881 from the original MODIS-based calculations 
at 1 km resolution ([3]; Fig. 4a). This difference was most likely due to the greater detail (and 
therefore variability) expressed in the 28.5 m resolution data with compare to the 1 km 
resolution data. 
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Fig. 4. Comparison of GDD values obtained without and with data fusion applied. 
Mean GDD value at 1 km resolution is 1881 and at 28.5 m, 1872. 

 
Figure 5 shows the spatially enhanced long-term average GDD map for the current normal 

period (Fig. 5a) and associated GDD frequency distribution (Fig. 5b) at 28.5 m for the 
province of NS. For validation purposes, we opted to use our previously generated MODIS-
based GDD map at 250 m resolution [3], as it was calibrated and validated using two 
independent datasets, namely, GDD values from Environment Canada climate stations and a 
GDD map for the 1951-1980 normal period (Ref. 11-12). Fig. 5c provides a comparison of 
GDD pixel values for the 250 m resolution map with the mean values obtained by averaging 
the pixel values of the current map (at 28.5 m resolution) coinciding with individual 250 m × 
250 m pixels. Despite slight variations between pixel values at 1 km resolution (Fig. 4), mean 
values and spatial distribution for the two maps were nearly identical. This was borne out by 
the alignment of comparison data pairs specified at 250 m resolution along the 1:1 
correspondence line and linear regression statistics of the line fitted to the data (i.e., slope of 
0.90, y-intercept of 143.93, and an r2-value of 99.6%; Fig. 5c). Greatest systematic deviation 
from the 1:1 correspondence line occurred for values in the 800-1000 and 1700+ ranges.  The 
800-1000 range corresponded to observations made over discontinuous wetland, riparian 
forests, and low-lying wet zones, while values > 1700 coincided with agricultural zones and 
sparse vegetation areas. This deviation was most likely related to the reduction in variation 
(and detail) associated with the lower resolution MODIS-based GDD map.  
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Fig. 5. (a) Spatial and (b) frequency distribution of long-term average GDD at 28.5 
m resolution for the current normal period (1971-2000); and (c) comparison of GDD 

values obtained by averaging values at 28.5 m coincident with individual 250 m × 
250 m pixels (y-axis) and values originally derived at 250 m resolution (x-axis, 

based on work described in [3]).   

5 CONCLUDING REMARKS 
In this paper, we demonstrated an approach for generating a long-term average GDD map at 
an enhanced resolution of 28.5 m for the current normal period using Landsat-7 ETM+ 
surface reflectance products at 28.5 m resolution, MODIS-based EVI products at 250 m 
resolution, and a previously-derived GDD map generated primarily from MODIS-based 
surface temperature products at 1 km resolution. The core of the methodology is based on a 
new statistical data fusion approach by exploiting the underlying relationship between EVI 
and GDD. Although there were pixel-level variations in calculated GDD, spatial patterns at 
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regional scales remained mostly unaffected. This data fusion approach has potential to be used 
in fusing ecological data collected, or processed from data collected, from different remote 
sensing platforms with bands of near-similar characteristics.  
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