Secure Message Transmission using Noisy Channels and a Shared Key

Setareh Sharifian

University of Calgary

April 2020

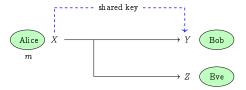
Secure Communication Problem

Secure communication

Secure Communication Problem

Secure communication

- ► Reliability & Security?
 - ▶ Shannon 1949¹: the first formal model for secure communication
 - ► Two steps solution
 - ▶ Provide Reliability: Error Correcting Codes (ECC)
 - ▶ Provide Security: One-Time Pad (OTP) with a shared key

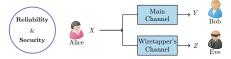


Secure Communication

▶ Use computational assumptions

Breakable by a quantum computer!

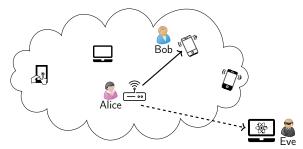
- ▶ Use physical assumptions (Information Theoretic)
 - ► Secure Message Transmission (Wiretap Channel)



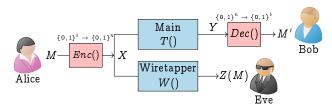
Realizing a Wiretap Channel

An IoT Environment

- ► Long-term security
- ► Devices with energy constraints
- ► Attackers are at longer distances



Message Encoding over Wiretap Channel



- ▶ Reliability: $Pr(M \neq M') < \sigma_n$
- ▶ Strong security²MIS \equiv SS \equiv DS: $Adv^{xs} \leq \epsilon_n$

$$\mathbf{MIS}: \max_{P_M} I(M; Z(M)) = Adv^{mis}$$

$$\mathbf{SS}: \max_{f,P_M}[\max_A Pr[A(Z) = f(M)] - \max_s Pr[S = f(M)] = Adv^{ss}$$

$$\mathbf{DS}: \max_{M_0, M_1} SD(Z(M_0); Z(M_1)) = Adv^{ds}$$

ightharpoonup Message transmission rate $R = \frac{b}{n}$

 $^{^2}$ Bellare, Mihir, Stefano Tessaro, and Alexander Vardy. "Semantic security for the wiretap channel" 2 2

Secrecy Capacity

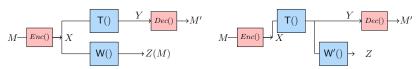
- ▶ Secrecy capacity C_s :
 - ▶ Highest achievable secure message transmission rate
- $ightharpoonup C_s$ for the general channels [CK78]

$$C_s = \max_{V
ightarrow X
ightarrow YZ} (I(V;Y) - I(V;Z)).$$

 \Rightarrow Secure communication condition: I(V; Y) > I(V; Z)

- ightharpoonup Explicit C_s
 - ► (Weakly) Symmetric channels
 - ► Degraded wiretapper channel

$$C_s = C_{\mathsf{T}} - C_{\mathsf{W}}$$



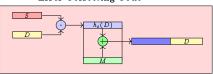
General wiretap channel

Degraded wiretap channel (X - Y - Z)

Construction of a WT Encryption System

► HtE: Hash then Encode

Error Correcting Code



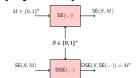
Building Block:efficiently invertible universal hash family (ei-UHF)

- ei-UHF $(g_s(x, y))$ from XoR UHF $(h_s(x))$:

$$g_s(x,y) = h_s(x) \oplus y$$

► Modular Construction

► Seeded Encryption: seed length is amortized asymptotically



XoR UHF: a family of functions $\mathcal{H} = \{h_s | s \in S, h_s : \mathcal{X} \to \mathcal{Y}\}$ for $s \stackrel{\$}{\leftarrow} \mathcal{S}$, where for any $x \neq x' \in \mathcal{X}$ and $a \in \mathcal{Y}$

$$\Pr[h_s(x)_s(x')=a] \leq rac{1}{|\mathcal{Y}|^2}$$

Security of HtE

- ► HtE is SS≡ DS using the framework of [BTV12](for symmetric channels)
 - 1. Prove DS for uniformly random message
 - 2. Check two properties of the encoding
 - * Message linear:

$$HtE(\mathbf{k}, \mathbf{s}, \mathbf{m}_1 \oplus \mathbf{m}_2) = HtE(\mathbf{k}, \mathbf{s}, \mathbf{m}_1) \oplus HtE(\mathbf{k}, \mathbf{s}, \mathbf{m}_2)$$

* Separable:

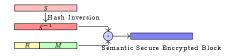
$$HtE(\mathbf{k}, \mathbf{s}, \mathbf{m}) = HtE(\mathbf{k}, \mathbf{s}, 0^b) \oplus HtE(0^k, \mathbf{s}, \mathbf{m})$$

- ⇒ **DS** for any message distribution
- ► Capacity achieving for degraded WT channels with symmetric channels
 - ► Seed length is amortized asymptotically

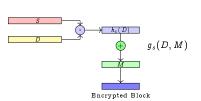
Finite-length Comparison of HtE and ItE

We only look at the secure coding block

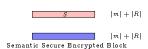
ItE: Invert then Encode [BTV12]



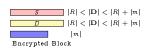
HtE: Hash then Encode



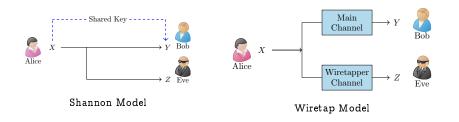
Transmitted Blocks:



Transmitted Blocks:



Shannon vs Wyner



- ► Shannon 1949
 - lacktriangle Perfect secrecy requires: $|m|=|k|\Rightarrow$ limited practical applications
- ▶ Wyner 1975:
 - ► Semantic Security is possible at relatively low rate

There exist a key K of rate $\mathbf{R}_K = \frac{log|\mathcal{K}|}{n}$ over the wiretap channel

▶ Theorem³: The secrecy capacity of the general wiretap channel with a shared key of rate \mathbf{R}_K

$$\max_{V \to X \to YZ} \min \left(\left[I(V;Y) - I(V;Z) \right]^{+} + \mathbf{R}_{K}, I(V;Y) \right)$$

Kang, Wei, and Nan Liu. "Wiretap channel with shared key." ←□ ト ←□ ト ← ≧ ト ← ≧ ト → ≧ → へへ ○

There exist a key K of rate $\mathbf{R}_K = \frac{\log |\mathcal{K}|}{n}$ over the wiretap channel

▶ Theorem³: The secrecy capacity of the general wiretap channel with a shared key of rate \mathbf{R}_K

$$\max_{V \to X \to YZ} \min \left(\left[I(V;Y) - I(V;Z) \right]^{+} + \mathbf{R}_{K}, I(V;Y) \right)$$

There exist a key K of rate $\mathbf{R}_K = \frac{\log |\mathcal{K}|}{n}$ over the wiretap channel

▶ Theorem³: The secrecy capacity of the general wiretap channel with a shared key of rate \mathbf{R}_K

$$\max_{V \rightarrow X \rightarrow YZ} \min \left(\left[I(V;Y) - I(V;Z) \right]^{+} + \mathbf{R}_{K}, I(V;Y) \right)$$

- ► Security is in terms of normalized mutual information for uniform message distribution
- ▶ Reliability is in terms of average error probability.
- ► Explicit construction is not given

There exist a key K of rate $\mathbf{R}_K = \frac{\log |\mathcal{K}|}{n}$ over the wiretap channel

▶ Theorem³: The secrecy capacity of the general wiretap channel with a shared key of rate \mathbf{R}_K

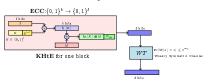
$$\max_{V \to X \to YZ} \min \left([I(V;Y) - I(V;Z)]^{+} + \mathbf{R}_{K}, I(V;Y) \right)$$

distinguishing advantage

- Security is in terms of normalized mutual information for any uniform message distribution
- ► Reliability is in terms of maximum average error probability.
- ► Explicit construction is not given

Keyed Wiretap Encoding Schemes

▶ KHtE: Keyed Hash then Encode

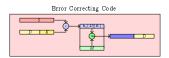


- ▶ Bits that reveal information $< d (\hat{b} b)$
- lacktriangle Bits that hide information < t +
 u
 - Key length: $t = n.R_K$
- Treat the channel as a source of randomness

$$u = H_{\infty}(\mathsf{CH}) = -\log\left(\max_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{CH}(x, y)\right)$$

- ▶ No information leakage $d + b \hat{b} \approx t + \nu$
 - $\mathbf{SD}\left((S,\mathsf{W}(\mathsf{f}(h_S(K)||\,U_{\hat{b}-b})));(S,\,U_{\boldsymbol{\ell}})\right)\leq\epsilon.$

► KHtE*: The unified code



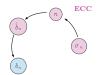
- ► Becomes HtE when there is no shared key
- Becomes ε-One-Time pad when the wiretap's secrecy capacity is zero

Using KHtE IN PRACTICE

Theorem 1:KHtE is reliable, semantically secure and capacity achieving for weakly degraded wiretap channel with the following choice

$$b_n = n.\mathbf{R}_K + \hat{b}_n - n.\mathbf{C}_W - \sqrt{n}\log(2^{\ell} + 3).\sqrt{2\log\frac{1}{\epsilon_n}} + 2\log\epsilon_n$$

- $lackbox{lack}$ Worst error probability: $\max_{m\in\mathcal{M}}\Pr[(m
 eq\hat{m})]<\sigma_n$
- ▶ Distingishing security: $2 \max SD(W(Enc(m)); U_Z) < \epsilon_n$



Capacity achieving:

$$\mathbf{R} = \lim_{n o \infty} rac{b_n}{n} = (\lim_{n o \infty} rac{\hat{b}_n}{n} - C_{\mathsf{W}}) + \mathbf{R}_K = C_T - C_W + \mathbf{R}_K$$

Conclusion and Future Works

Concluding Remarks

- ► An efficient semantically secure wiretap code for DMC wiretap channel
- ► The *first* semantically secure wiretap code with shared key for weakly symmetric channels
- Finite-length expression for achievable encoding rate

Future Works

- ▶ Extending this result to more general channels
- ► A framework for converting other wiretap codes into the keyed wiretap codes
- ► Implementation of wiretap codes

THANK YOU

References I

- BTV12] Mihir Bellare, Stefano Tessaro, and Alexander Vardy, Semantic security for the wiretap channel, Advances in Cryptology-CRYPTO 2012, Springer, 2012, pp. 294-311.
- [CK78] Imre Csiszár and Janás Körner, Broadcast channels with confidential messages, Information Theory, IEEE Transactions on 24 (1978), no. 3, 339-348.

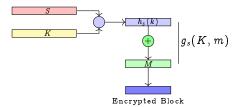
HtE: A Seeded Encryption

- ▶ HtE is a modular construction of wiretap codes
 - ► Semantic secure, capacity achieving, efficient
- ▶ ei-UHF is the building block HtE
 - $lackbox{mlack}{\mathcal{H}}=\{h_s|s\in\mathcal{S}\}: ext{ a family of XoR universal hash functions } \mathcal{X} o\mathcal{Y}$

$$g_s(x,y)=h_s(x)\oplus y$$

 $\mathcal{G} = \{g_s | s \in \mathcal{S}\}$ is a family of universal hash functions (ei-UHFs)

HtE: Hash then Encode



Finite-length Comparison of HtE and ItE

The effective rate of ItE and HtE over a BSC_p with $\sigma=32$ bits and p=0.15,0.25,0.35

