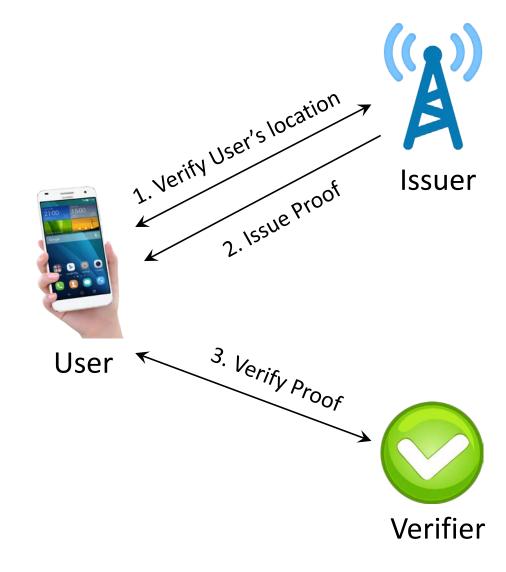
A Secure and Private Proof-of-Location System

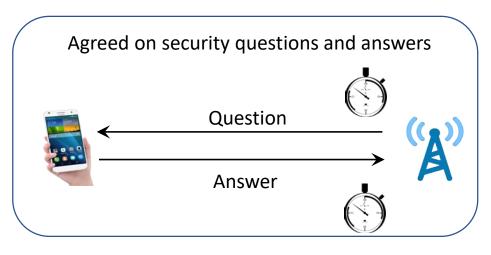
Mamunur Akand


May 15, 2020

Motivation

Proof-of-Location (pol)

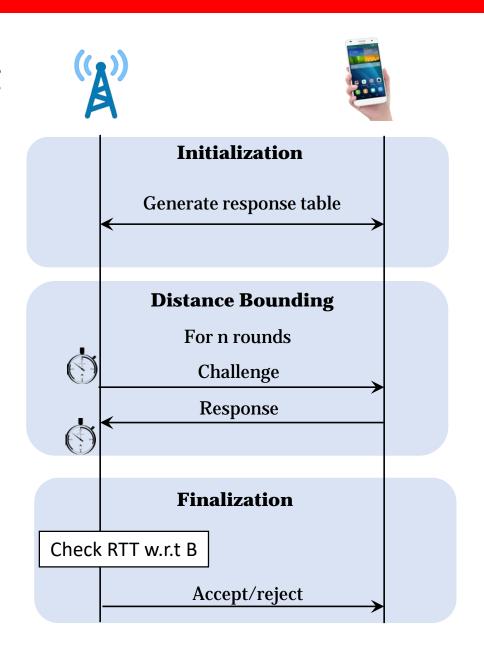
- Digital certificate, attesting location at a time
 - ➤ Reward system: discount to frequent customers
 - Supply chain: preserving product integrity
- Requirements:
 - ➤ Unforgeable
 - ➤ Non-transferable
 - User privacy

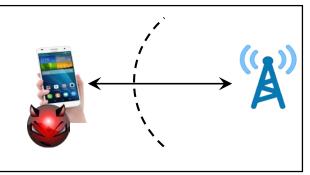


Background

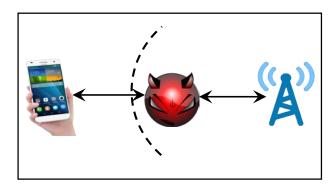
Verify User's Location

- Device proximity based on network visibility [1, 2]
 - ➤ Can communicate ⇒ In proximity
 - ➤ Insecure: Relay attacks
- User-claimed GPS location [3]
 - Unreliable indoor
 - Known attacks on GPS
- Distance bounding protocols[4, 5]

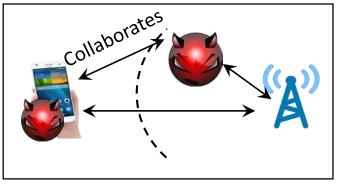



Distance Bounding Protocol

- [1] S. Sarioiu and A. Wolman. Enabling New Mobile Applications with Location Proofs. *HotMobile'09*.
- [2] W. Luo and U. Hengartner. VeriPlace: A Privacy-aware Location Proof Architecture. GIS'10.
- [3] Z. Zhu and G. Cao. APPLAUS: A Privacy-Preserving Location Proof Updating System for Location-Based Services. INFOCOM'11.
- [4] X. Wang et al. STAMP: Ad hoc Spatial-Temporal Provenance Assurance for Mobile Users. ICNP'13.
- [5] S. Gambs et al. PROPS: A PRivacy-Preserving Location Proof System. SRDS'14.


Background

Distance-Bounding Protocol



Distance Fraud

Mafia Fraud

Terrorist Fraud

Shortcomings of Existing POL Systems

- User's location verification not secure [1, 2, 3].
- Systems in [4,5] use DB from [6].
 - ➤ Insecure against Distance fraud, Terrorist Fraud [7]
 - > Cannot replace with secure DB
- No common model for security and privacy
 - Informally specified properties
 - Different terms for same property

- [1] S. Sarioiu and A. Wolman. Enabling New Mobile Applications with Location Proofs. *HotMobile'09*.
- [2] W. Luo and U. Hengartner. VeriPlace: A Privacy-aware Location Proof Architecture. GIS'10.
- [3] Z. Zhu and G. Cao. APPLAUS: A Privacy-Preserving Location Proof Updating System for Location-Based Services. INFOCOM'11.
- [4] X. Wang et al. STAMP: Ad hoc Spatial-Temporal Provenance Assurance for Mobile Users. ICNP'13.
- [5] S. Gambs et al. PROPS: A PRivacy-Preserving Location Proof System. SRDS'14.
- [6] L. Bassard and W. Bagga. Distance-Bounding Proof of Knowledge to Avoid Real-time Attacks. IFIP'05.
- [7] A. Bay et al. The Bussard-Bagga and Other Distance-Bounding Protocols Under Attacks. ICISC'12.

Our Contribution

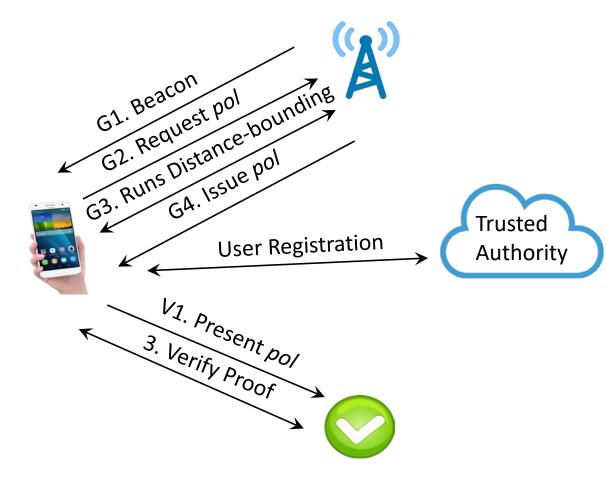
Formalize security and privacy of POL systems.

Construct a POL that provably achieves these properties.

Implement cryptographic algorithms to show feasibility of the solution.

System Model

Entities:


- Trusted authority
 - System parameters
 - Keys, certificates for entities
- User
- Issuer
 - Access point (AP)
- Verifier
 - Service provider

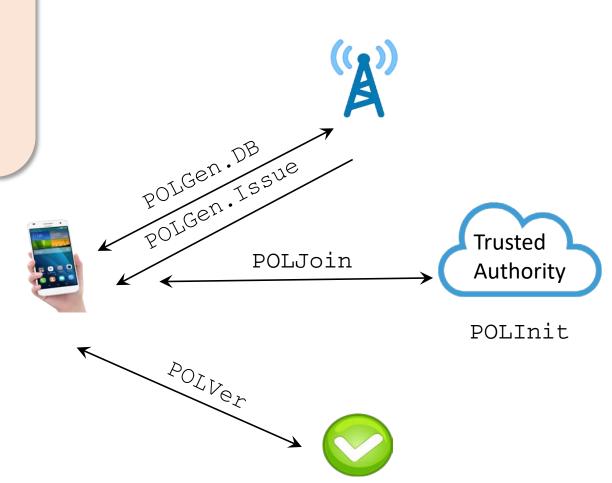
Trust Assumption:

- Issuer, verifier: honest, curious
- User: untrusted

Other Assumptions:

- User u's location is w.r.t the location of issuing Access Point ap
- pol is ap's signature on "u is within distance B from loc_{ap} "

Definitions

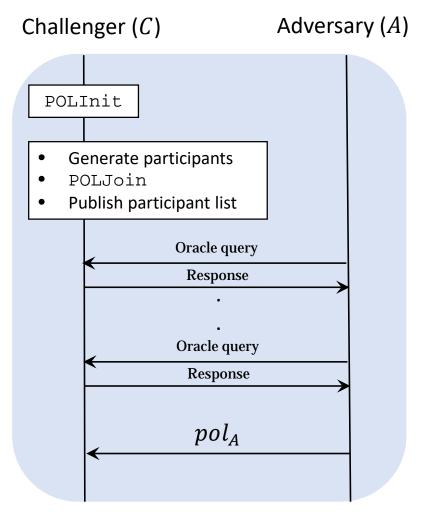

Definition 1 (POL Scheme). Defined by

POLInit (1^{λ}) \rightarrow public and private parameters

 $POLJoin[TA \leftrightarrow User] : User registration$

 $POLGen[User \leftrightarrow Issuer]: POLGen.DB, POLGen.Issue$

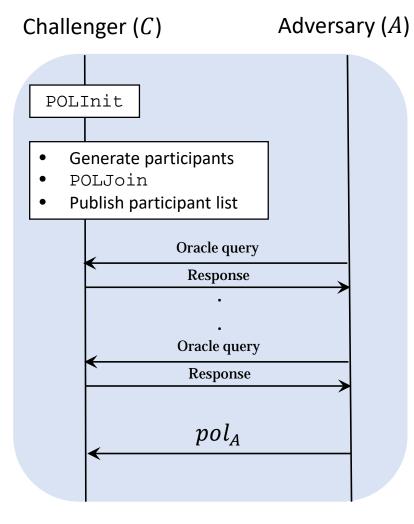
POLVer [$User \leftrightarrow Verifier$]: proof verification



Definitions

Oracle query	Output	Update List
Corrupt(X)	Credentials of X	CorruptList $\langle X \rangle$
POLGen(ap, u)	$pol \leftarrow \texttt{POLGen}[u \leftrightarrow ap]$	$GenList\langle pol, u \rangle$
POLVer(u, v, pol)	$pol \leftarrow \texttt{POLVer}[u \leftrightarrow ap]$	$VerList\langle pol,u\rangle$

Definition 2 (POL Game). Define a challenger-adversary game as:

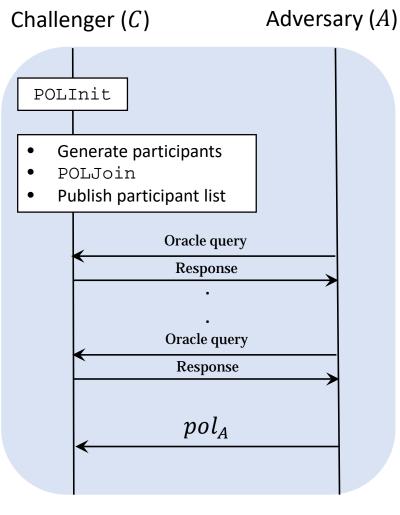

- 1. Initialize
 - > Challenger runs POLInit
- 2. Generate participants
 - Challenger generates users, issuers and verifiers
 - ➤ Challenger runs POLJoin for all users
- 3. Queries
 - Adversary makes oracle queries
- 4. Adversary outputs
 - \triangleright Adversary outputs a proof-of-location pol_A

POL Game

POL Security properties

- Unforgeability, Non-transferability, Anonymity
- Defined based on the game
- Indistinguishability based approach for user anonymity
 - w.r.t to issuer
 - w.r.t to verifier

POL Game


Property 1 (POL Unforgeability). Consider a POL scheme and a POL game where

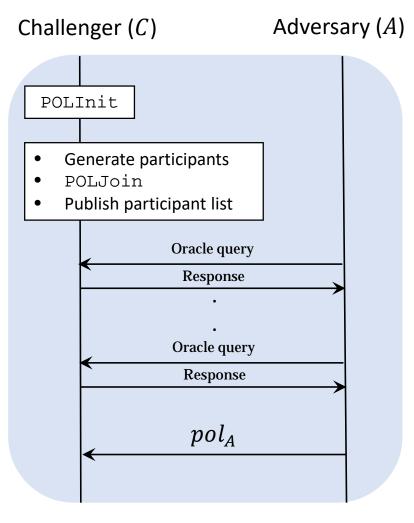
- Corrupt(X) query only corrupts users
- Adversary outputs pol_A .
- Winning conditions:
 - $\exists (pol,.) \in VerList \ s.t. \ pol = pol_A$
 - $\nexists(pol,.) \in GenList \ s.t. \ pol = pol_A \ OR \ \exists \ (pol,.) \in GenList \ s.t. \ pol = pol_A \ \land \ d(u,ap) > B$

POL is Unforgeable if adversary wins with negligible probability.

Adversary wins if:

- pol_A is successfully verified
- pol_A is not generated by a listed issuer, Or,
- ullet pol_A is generated by a listed issuer, but user was far away from issuer

POL Game


Property 2 (POL Non-transferability). Consider a POL scheme and a POL game where

- Corrupt(X) query only corrupts users
- Adversary outputs pol_A .
- Winning conditions:
 - $\exists (pol, u) \in VerList \ s. \ t. \ pol = pol_A$
 - $\exists (pol, u') \in GenList \ s.t. \ pol = pol_A \land u' \neq u$

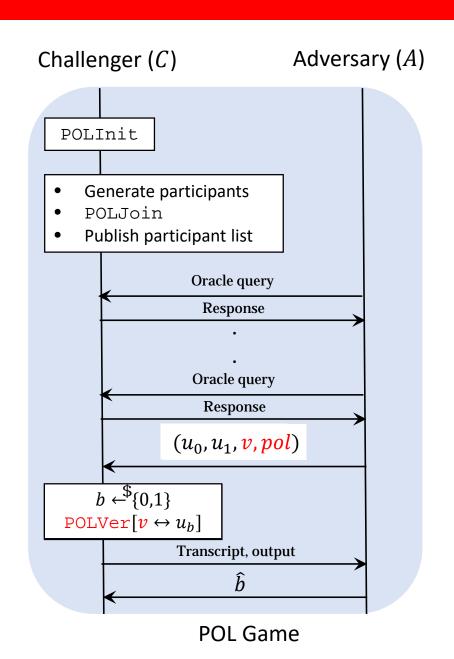
POL is Non-transferable if adversary wins with negligible probability.

Adversary wins if:

- pol_A is successfully verified for user u
- pol_A was issued to user $u' \neq u$

POL Game

Property 1 (POL Anonymity). Consider a POL scheme and a POL game where

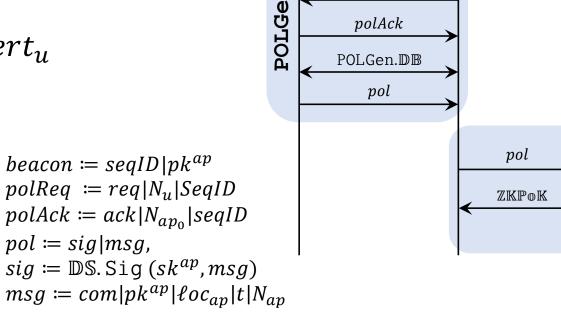

Corrupt(X) query only corrupts issuers and verifiers

Anonymity w.r.t verifier:

- Adversary chooses a pair of users (u_0, u_1) and a verifier v
- Challenger runs POLVer between v and $u_{b \leftarrow \{0,1\}}$ for pol
- Transcript and output of protocol are returned to A.
- Adversary outputs \hat{b}

Winning condition:

• $|\Pr[\hat{b} = b] - \frac{1}{2}|$ is non-negligible.


Cryptographic primitives

- Digital signature (KeyGen, Sign, Verify) [8]
- Commitment (KeyGen, Commit) [9]
 - Committer hides a value x (com = Commit(x,r))
 - Reveal x later
 - No info on x is leaked before reveal stage (hiding)
 - x cannot be changed once it is committed (binding)
- Zero-knowledge proof of knowledge
 - Prover-verifier protocol
 - Prover possess w that satisfies relation R
 - No info on w revealed
 - $ZKPoK\{(\alpha, \beta, \gamma): y = g^{\alpha}h^{\beta} \wedge \tilde{y} = \tilde{g}^{\alpha}\tilde{h}^{\gamma}\}$

- [8] J. Camenisch et al. A signature scheme with efficient protocols. SCN'02.
- [9] E. Fujisaki et al. A practical and provably secure scheme for publicly verifiable secret sharing and its applications. EUROCRYPT'98

- 1.POLInit (1^{λ})
 - TA Generates its public/private signature keypair (pk^{TA}, sk^{TA})
- 2.POLJoin[$TA \leftrightarrow User$]
 - TA issues secret s_u and certificate $cert_u$ to the user u
- 3. POLGen[$User \leftrightarrow Issuer$]
 - POLGen.DB
 - POLGen.Issue
- 4. POLVer [$User \leftrightarrow Verifier$]

 $\mathbb{ZKPoK}\{(s_u, \alpha, cert_u) : com = g^{s_u}h^{\alpha} \land \mathbb{DS.Vf}(pk^{TA}, s_u, cert_u) = 1\} [8]$

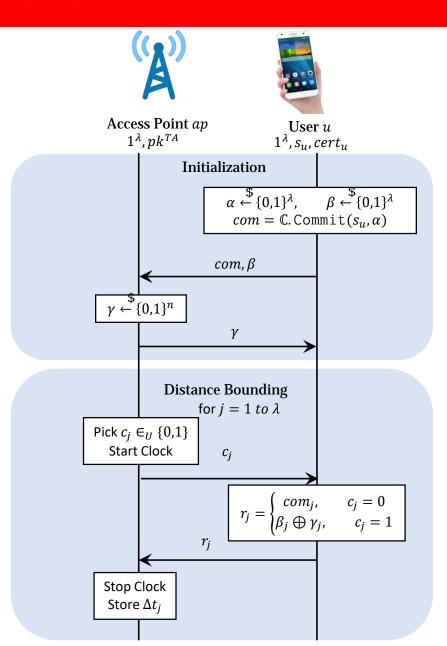
Access Point ap

POLGen and POLVer

User u

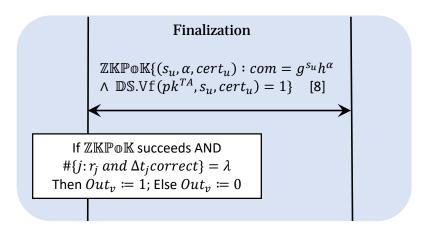
beacon

polReg


Verifier v

Requirements:

- Distance bounding protocol:
 - 1. User anonymity
 - 2. Transcript with sufficient information \Rightarrow make *pol* non-transferable
- Cannot use existing anonymous DB [9,10,11]
 - Do not satisfy both properties

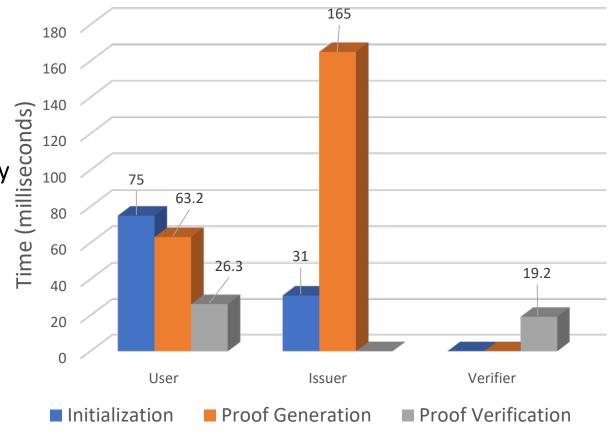

[9] Ahmadi, A., et al.: New attacks and secure design for anonymous distance-bounding. ACISP'18 [10] Bultel, X., et al.: A prover-anonymous and terrorist-fraud resistant distance-bounding protocol. ACM WiSec'16 [11] Gambs, S., et al.: Prover anonymous and deniable distance-bounding authentication. ASIACCS'14

POLGen.DB

ZKPoK: com is a valid commitment over a value s_u and s_u is certified by the TA

[8] J. Camenisch et al. A signature scheme with efficient protocols. *SCN'02*.

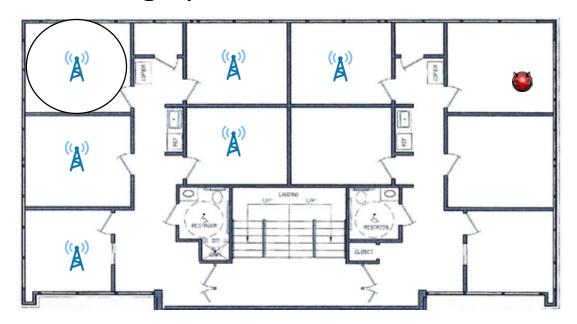
Security Analysis


Theorem.

- i. DB Security: POLGen.DB is secure against distance fraud, mafia fraud and terrorist fraud attacks.
- ii. POL Unforgeability: Assuming POLGen.DB is secure and digital signature is secure, POL is unforgeable.
- iii. POL Non-transferability: Assuming the ZKPoK is sound, and user does not share credential, POL is Non-transferable.
- iv. POL Anonymity: Assuming the commitment scheme is computationally hiding and ZKPoK is zero knowledge, POL is anonymous w.r.t issuer and verifier.

Proof-of-concept Implementation

- Idemix Java Library (www.zurich.ibm.com/idemix)
 - **≻** Commitment
 - > ZKP
 - > CL-signatures
- Samsung Galaxy S9
- No DB
 - > Device proximity based on network visibility
- Initialization:
 - ➤ Commitment, ZKPoK
- Proof Generation:
 - > CL-signature
- Proof verification:
 - **>** ZKPoK
- Proof size: 1940 bytes



Other Contributions

Geo-tampering attack

Physically move issuer ⇒ forge proof-of-location

• Solution: Ensure that issuer's relative position to its neighbors is unchanged