
SECURE LOGGING:
NOTIONS OF SECURITY AND
CRYPTOGRAPHIC APPROACHES
TO SECURITY

SEPIDEH AVIZHEH

SEPIDEH.AVIZHEH1@UCALGARY.CA
UNIVERSITY OF CALGARY, ALBERTA, CANADA

Information Security Talk Series- April 17 20204/17/2020

1

Logging

4/17/2020

2

 Log: a record of the important events in the system
 Logs are composed of log entries
 Each Log entry contain an event

 Applications:
 Troubleshooting and maintanence
 Intrusion detection: any set of actions that attempt to

compromise the integrity, confidentiality or availability of a
resource

 Digital Forensics: investigation after intrusion is detected

m1 m2 m3 m4 m5 m6 m7 m8 m9 …

Secure Logging

4/17/2020

3

 logs typically contain computer security-related
information
 adversaries want to stay covert modify and tamper

with the log files without being detected
 Example: some malwares are specifically designed to alter

logs to remove any evidence of their installation or
execution

 Goal: Ensure Integrity
 Alteration
 Deletion
 Reordering

Road map

 Forward Integrity
 Prf-chain MAC (Bellare-Yee)

 Forward-secure stream integrity
 Aggregate authentication (Ma-Tsudik)

 Crash Integrity
 SLiC (Blass-Noubir)

 Adaptive Crash Integrity
 Security definition
 Impossibility result
 Double evolving key mechanism
 Comparison with SLiC
 Implementation and Evaluation

4/17/2020

4

Logging scheme

4/17/2020

5

 Gen(.):
 Takes security parameter
 outputs initial state

 Log(.,.):
 Takes the current state and a new event
 Outputs a new state

 Recover(.,.):
 Takes an initial state or the latest state
 Reconstructs the longest sequence of events that pass the

system integrity checks, or outputs “untrusted log”

Secure Logging through MAC

4/17/2020

6

 MAC: secure against chosen message attacks
 HMAC
 CBC-MAC

 Security relies on the key to be unknown to attacker
 What about the case that attacker compromises the

system?
 No security will be guaranteed

m1|H1 m2|H2 m3|H3 m4|H4 …

)(11 1
mMACH K=

Forward Integrity

4/17/2020

7

 Attacker compromises the logging device at time T
 Attacker gets access to keys

 Goal: Preserve the integrity of Log entries
generated before time T

m1 m2 m3 m4 m5 m6 m7 m8 m9 …

T

Forward Integrity

4/17/2020

8

•Adversary succeeds if he
outputs a false log entry
(mj,hj) for an earlier time

3) Gets acesses to keys (issues an open request at time T)

Adversary
Challenger

1) Issues q events to be logged

2) Observes the output of Log()

4) Keys

Prf –chain Mac (Bellare-Yee)

4/17/2020

9

 is removed

m1|H1 m2|H2 m3|H3 m4|H4 …

)(11 1
mMACH K=

)(
01 χKPRFK =

)(iKi mMACH
i

=

)(
1
χ

−
=

iKi PRFK

1−iK
)(

12 χKPRFK = …

Truncation atatck

4/17/2020

10

 Attacker may
 Truncate the log

 Goal: Preserve the integrity of Log files against
Truncation

m1 m2 m3 m4 m5 m6 m7 m8 m9 …

Forward secure stream integrity

4/17/2020

11

 Forward secure sequential aggregate
authentication

 Forward security
 Stream security
 Integrity

Forward secure sequential aggregate
authentication (Ma-Tsudik)

4/17/2020

12

 Previous Mac is removed from the system

m1|H1 m2|H2 …

)(11 1
mMACH K=

)(
01 χkPRFK =

)(iKi mMACH
i

=

)(
1
χ

−
=

iki PRFK

)|))..(|))((((....
)|(

21

1

21 ikk

iii
HmMACmMAC

HTT
ΗΗΗ

=Η= −

)(
12 χkPRFK = …

)(12 2
mMACH K=

)|(212 HTT Η=)(11 HT Η=

1) Updates x to x’ (in the cache)

2) Stores x’

3) Deletes x

 System crashes before x’ is stored

=> System is stateless

Crash attack Blass-Noubir (CNS’ 17)

4/17/2020

13

Normal Crash Crash Attack

Adversary
1) Gets access to the logging device

2) Modifies the log file

(delete events)

3) Crashes the System

⇒ System is stateless

Operating System (OS)

3) The last state of the log file

Crash Integrity against a non-adaptive
attacker

4/17/2020

14

1) Issues log queries for n events

•The goal is to remain undetected
•Adversary succeeds if he can remove/modify an event which is not supposed to be in
the cache during the crash (Expendabe set)

Adversary
Challenger

Gen oracle

Log oracle

Recover oracle

Crash oracle

2) Uses Log() on each event

4) A modified log file, crashed state

Adversary compromises the device

Cache

4/17/2020

15

Cache size (cs) = > maximum number of log events that will be lost during a
normal crash

 Logging an event generates a set of disk write operations,
 will add a new entry to the Lstore
 may update a number of other entries

 If logging device crashes before Log(.,.) completes, all write operations
created by Log(.,.) will be lost.

 we consider 2cs events (the interval [n- cs+1, n+cs]) as expendable set

Log file

Cache

n

SLiC

4/17/2020

16

c1|H1|k1 c5|H5|k5 c6|H6|k6 c4|H4|k4 …

))((iKKi mEncMACH
ii

=

)(
1
χ

−
=

iKi PRFK

)(iKi mEncc
i

=

)(iPRF
iKi =κ

),,(iii kHc

Adaptive crash attack

4/17/2020

17

 An Insider adversary who can observe the log file
during the log operation

 Adversary compromises the device
 can rewind the system to a past state

 Non of the existing schemes are secure in this model

s1 s2

s3 s2 s1

s3 s2 s4 s1

s3 s2 s5 s1 s4

1 2 3 4 5

System model

4/17/2020

18

 Logging device:
 runs Gen(.) and Log(.,.)

Adaptive crash attackNon-adaptive crash attack

Key Cache

4/17/2020

19

 The log operation will also update keys
 We assume the KStore stores the key, k_j, which is

used in constructing o(m_j) only

 If crash happens, k_j that is being updated will also
become unreliable.

KStore

Key cache

k_j

k_j k_j+1

4) The last state of the Kstore and its cache

Crash Integrity against a non-adaptive
attacker

4/17/2020

20

1) Issues log queries

•The goal is to remain undetected
•Adversary succeeds if he can remove/modify an event which is not supposed to be in
the expendable set

Adversary
Challenger

Gen oracle

Log oracle

Recover oracle

Crash oracle

2) Uses Log() on each event

5) A modified log file, crashed state

3) Observes the state of the Lstore and its cache

n
times

Impossibility Result

4/17/2020

21

 All existing schemes are vulnerable to adaptive
crash attack
 Even considering a protected KStore according to our

model
 KStore can be undetectably removed or modified

when the system is compromised
 A logging system that cannot reliably protect its

state information during logging operation and
assuming an adaptive adversary who can see the
LStore, is subjective to rewinding

Logging scheme

4/17/2020

22

 Double evolving key mechanism
 Use two key sequences evolve with different rate
 State controlled key: updated with probability through

the result of a choice function
m
1

TikHCF j <−),'(:() 1

Security (informally)

4/17/2020

23

 The double evolving key mechanism is stable
 is the probability of a removal in a normal crash
 if the choice function CF() outputs 1 with probability
 the probability that the key is removed by a normal crash is

 Use two (or more) independent state-controlled keys
 different PRFs
 evolves at different rates
 probability that all keys are missing will be reduced to a

greater extent

m

2α

m
1

m

2α

α

Recovery

4/17/2020

24

 Generate the keys
 All sequential and state controlled keys
 For evolving state controlled keys we check CF()

 Compute expendable set
 Captures the LStore entries that are considered unreliable

when a crash happens
 Determine the set of all possible keys that may reside in

the Kstore during crash

 Output R or “untrusted log”

Complexity analysis

4/17/2020

25

 Advantages:
 our scheme is faster
 Each log operation in our scheme requires one write

operation on disk whereas in SLiC requires two write
operations

 The order of events is preserved in the log file
Algorithm/scheme Our scheme SLiC SLiCOpt

Log(.,.) O(1) O(1) O(1)

Recover(.,.) O(n’) O(n’log(n’)) O(n’)

n’: number of events

Implementation

4/17/2020

26

 --Windows computer with 3.6 GHz Intel(R)
Core(TM) i7-7700 CPU

 --Raspberry Pi 3, Model B with 600 MHz ARM CPU
running Raspbian

Logging performance
(total time in seconds)

4/17/2020

27

 # events: 220

Hardware Scheme Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Windows PC Our
scheme

40.2 40.2 40.4 40.7 40.5

SLiC 95.2 96.0 95.2 95.4 96.0

Plain 2.0 2.0 2.0 2.0 2.0

Raspberry Pi
3

Our
scheme

330.5 325.4 319.0 324.5 319.6

SLiC 790.2 792.0 777.9 789.2 796.8

Plain 18.8 18.7 18.8 19.0 18.9

Conclusion

4/17/2020

28

 We reviewed exsisting notions of secure logging
 We inroduced adaptive crash attack

 adversary can rewind the system back to one of the
past states

 We showed that this attack is strictly stronger than
non-adaptive crash attack
 all existing schemes are subjective to this attack

 We also proposed double evolving key mechanism

Future works

4/17/2020

29

 Ensuring crash integrity against an adaptive
attacker without considering a protected memory
for keys

 We observed that
 By using uniform distribution for double evolving key

mechanism, adversary can succeed with less
probability

 Finding the best probability distribution for
evolving the key that it minimizes the success
probability of the attacker

Thank you!

4/17/2020

30

	Secure logging: �notions of security and cryptographic approaches to security��Sepideh Avizheh��sepideh.avizheh1@ucalgary.ca�University of Calgary, Alberta, Canada��
	Logging
	Secure Logging
	Road map
	Logging scheme
	Secure Logging through MAC
	Forward Integrity
	Forward Integrity
	Prf –chain Mac (Bellare-Yee)
	Truncation atatck
	Forward secure stream integrity
	Forward secure sequential aggregate authentication (Ma-Tsudik)
	Crash attack Blass-Noubir (CNS’ 17)�
	Crash Integrity against a non-adaptive attacker
	Cache
	SLiC
	Adaptive crash attack
	System model
	Key Cache
	Crash Integrity against a non-adaptive attacker
	Impossibility Result
	Logging scheme
	Security (informally)
	Recovery
	Complexity analysis
	Implementation
	Logging performance �(total time in seconds)
	Conclusion
	Future works
	Thank you!

