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Why key agreement?

o Symmetric-Key Crypto is secure if a key is shared among parties,
so it requires a secure Secret Key Agreement (SKA)

o Asymmetric-Key Crypto does not require the same shared key but
current symmetric-Key protocols, that are widely used over the
Internet, are not secure when the adversary has a Quantum
Computer!

Goal: Quantum-safe SKA 4+ Symmetric-Key Encryption
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Why information theoretic key agreement?

o Gives provable security guarantee against adversaries
with unlimited computational power

o Raises many new insights and gives a powerful framework to study
the fundamental limits of information networks

o Has many applications based on practical physical-layer assumptions

o It is quantum-safe
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Outline

o Part I: Information Theory
o Part II: Secret Key Agreement in Source Model

o Part Ill: Secret Key Agreement in Channel Model (if time permits)
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Background - Information theory W CALGARY

e Random variables (RVs)

Px(z) =Pr{X =z}
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e Random variables (RVs)

Px(z) =Pr{X =z}

o Information, Uncertainty, Entropy

1
Px(ZL‘)

logs
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e Random variables (RVs)

Px(z) =Pr{X =z}
o Information, Uncertainty, Entropy

1
= IEZ;YPX(@ logy Pr(@)
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o Entropy, Joint Entropy, Conditional Entropy
H(X) H(Y)

H(XY)

H(X,Y)=H(Y)+ H(X|Y)

H(X,Y)=H(X)+ H(Y|X)
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@ Mutual Information

H(X)
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@ Mutual Information

H(X) H(Y)

I(X;Y)

H(X,Y)=I(X;Y)+ HX|Y) + HY|X)
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@ Mutual Information

H(X) H(Y)

I(X;Y)

H(X,Y)=I(X;Y)+ HX|Y) + HY|X)
H(X) = H(X|Y) + I(X;Y)

H(Y)=H(Y|X)+ I(Y; X)
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@ Independence
Pr{X|Y}=Pr{X}

H(X|Y) = H(X)

I(X;Y)=0

H(X,Y)=H(X)+H(Y)
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o IID Source (Independent and identically distributed)

X" = (Xt17Xt27Xt37Xt47 cee ’th)

H(X") = H(Xy,) + H(Xy,) + -+ H(Xy,)
=nH(Xy,)

Pxn = (Pth )n
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Background - Source Model W CALGARY

o INID Source (Independent but not identically distributed)

X" = (X, Xy, Xtg, Xtgy - Xt,)

H(X") = H(Xy,) + H(Xp,) + -+ H(Xy,)

n
Pxn =] Px,,
j=1
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In general, when three variables are correlated, we have

I(X1; X3|X2) #0

H(X,) H(X>)

H(X3)

Px,x,x5 = Px,x, Pxs x, X0
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If Markov relation X7 — X9 — X3 holds,

Px,x,x3 = Pxx2Pxy)x,
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o Measuring Length

Consider a random binary string X

x=(0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0)
We have
> length(X) =16 and
» X ={0,1}6.
Observe that

length(X) = log | X|
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Background - Information theory

@ Source Coding (Compression)

X = Dec(F)

X{L@ F = Enc(X7)

1) X=X
2) length(F') be as small as possible.

19p033(]

Objectives: {

Consider a compression code & = (Enc, Dec), and a fixed n:

length(F
Comprssion rate TP (D) = L()
n
Error probability Pr {X #* X} <e€n
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X7 O F = Enc(XD) gl -
1 8
o
D

X = Dec(F)

Problem:
Find the minimum real value R* such that 75" — R* and ¢,, — 07
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X F = Enc(X7) 4P
1 3| X = Dec(F)
o
D

Source Coding Theorem: If Px, is known, then
R* = H(Xy).

That is for any rate Ry > H(X;) 3 a compression code with
asymptotic rate r,”"¥ — Ry, and negligible error probability (e, — 0);
and for any coding rate Ry < H(X) there does not exist any
compression code with negligible error probability.

Shannon, 1948

Multiterminal SKA 16 / 65



UNIVERSITY OF

/) CALGARY

Background - Information theory

X{’@ F = Enc(X})

X = Dec(F)

19p023(]

n
X 2

Source Coding with Side Information at the Decoder: If Py, x, is

known, then
R* = H(X|X>).

That is for any rate R; > H(X1|X2) 3 a compression code with
asymptotic rate 7P — R;, and negligible error probability (e, — 0);
and for any coding rate R; < H(X;|X2) there does not exist any
compression code with negligible error probability.

Slepian and Wolf, 1973

J

\.
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Public Discussion F

Alice éBob éEve

‘/171
K Ky

An (¢,0)—Secret Key (SK):
o Reliability: Pr{K; # K2} <e¢
o Secrecy: SD(K\FZ,UFZ) <o
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Wiretap Secret Key Capacity W CALGARY

Let IT be an SKA protocol family that Vn € N generates an (e, 0,)—SK.
Key rate of II is:
length(K)

rhevn) = <P

A key rate R is achievable if 3 an SKA II s.t.
o rEY(I) » R
e, —0
e o,—0

Wiretap secret key (WSK) capacity is the largest achievable key rate.
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Set of m terminals
Eg M=1{1,2,3,4,56}
@ Each terminal j has RV V;

=M

.

@:DS@&L)»

o Eve has unlimited computation power %
o Establish a shared Secret Key for AC M V)
Eg A={3,4,56}or A=M

@ Terminals 1 and 2 are helpers

=
N@E

=@i0
SOLY;

Free access to a noiseless public channel

Csiszar and Narayan, “Secrecy Capacities for Multiple Terminals,” IEEE Trans. Inf. Theory, Dec. 2004.
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Finding a general expression for
WSK capacity, Cyysi(Py,,), even
for the case of two terminals

(|M| = 2) is an open problem.
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Our Objective:
Find the WSK capacity of
special-case models that are of

practical importance.
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Public Discussion F

Alice Bob Eve
v vy z"
K K,
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Key Extraction (Privacy Amplification) @ CALGARY

Public Variable F

AIiceé éBob Eve
Vn V?’L

Z'VL

K K

A PA function fpa is (0)—Secure if SD(KFZ, UFZ) < o

Universal Hash Functions are good key extractors.
Alice and Bob need to arrive at a common randomness.

Multiterminal SKA 25 /65



UNIVERSITY OF

Privacy Amplification Lemma (PAL) W CALGARY

Key rate of fp4 is:

Tfley(fPA) _ length(K)

A key rate R is achievable if 3 a PA function fp4 s.t.
o 1Y (fpa) > R

e o, —0

-

PA Lemma [HTW16]: For every R € R satisfying
.1
R<H(V|Z)- Jim Elog|]:|,

there always exists a o, —secure privacy amplification function
fpa: V" = K, with 75 (fp4) = R and 7, — 0.

\.

Hayashi, Tyagi, and Watanabe, |IEEE Trans. on Inf. Theory, vol. 62, no. 7, July 2016.
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Information Reconciliation

Information Reconciliation (IR) a.k.a. Common Randomness Generation

Objective: arrive at a common variable CR = CR(V4, V3)

Noiseless Channel Noiseless Channel

F = Enc(V}") P
Alice ‘ : ’—)De«;«;der Bob
vy vy
Vit = Dec(F, V)
CR = (Vi,Va) CR=V,
Ry > H(W1|Vs) Ry > H(V1[ V)

Ry > H(Va|V1)
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Alice Bob Eve
X Y A
IR IR (Information Reconciliation)
CR CR
[ PA | S ["PA]  (Privacy Amplification)

K1 K2
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SKA by IR + PA U CALGARY

Alice Bob Eve

X Y A

IR F IR (Information Reconciliation)
CR CR

[ PA | S ["PA]  (Privacy Amplification)
K1 K2
1 log | F|
n n—)oo n
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Problem: For a given source model
(X,Y, Z) with known distribution Pyyz,
what is the key capacity, if
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Two-Party SKA against a wiretapper W CALGARY

Problem: For a given source model
(X,Y, Z) with known distribution Pyyz,
what is the key capacity, if the public
communication F is one-way (from
Alice to Bob)

Cwsk(Pxyz) =7
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Allce@ @Bob @Eve

one-way
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r

Theorem [AC93]: For a given source model (X, Y, Z) with known
distribution Pxy 7z, the one-way secret key capacity is

CWSK = maXH(U|ZV) — H(U|YV),
Pyy

where V —U - X — (Y, Z).

.

Theorem [AC93]: If X —Y — Z
Cwsk = H(X|Z) — H(X|Y).

Moreover, this capacity can be achieved by one-way communication.

\.

[AC93] Ahlswede and Csiszar, IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121-1132, Jul. 1993.
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OW-SKA when X — Y — Z holds.

Alice Bob Eve

O ® ©

X Y Z
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How to Achieve WSK capacity?

OW-SKA when X — Y — Z holds.

Alice Bob Eve
© @ ©
X Y Z
X X
b
Ky K,



How to Achieve WSK capacity?

OW-SKA when X — Y — Z holds.

Alice Bob Eve

X Y Z

l .
Enc £ Dec lim log || =H(X|Y)+p
n—00 n

X X
Hash S Hash

K] KZ



How to Achieve WSK capacity?

OW-SKA when X — Y — Z holds.

Alice Bob Eve
X Y A
l .
Enc F Dec lim M =H(X|Y)+pu
n—oco N
X X
n—00 n n—00 n

K] KZ



How to Achieve WSK capacity?

OW-SKA when X — Y — Z holds.

Alice Bob Eve
X Y Z
log
Enc F Dec lim M =H(X|Y)+pu
n—oo N
X X
n—00 n n—00 n
Kl K2

. log|KC
tim B pr(x12) — m(x) = it -

n—00
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OW-SKA when X — Y — Z holds.

Alice Bob Eve
X Y Z
l .
Enc £ Dec lim log || =H(X|Y)+p
n—0o0 n
X X
Hash S Hash im 25K 2 = i 198 |f | _¢
n—00 n n—)oc
K
log IIC\

lim

n—00

H(X|Z) = HX|Y) = Cysxe ==

E€—0
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Problem: Consider a source model (X,Y, Z) that is INID where
X, —Y; — Z; holds for every j.

What is the WSK capacity of this model?
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Problem: Consider a source model (X,Y, Z) that is INID where
X; —Y,; — Z; holds for every j.

What is the WSK capacity of this model?

’

Theorem [SPS’20]: For the INID source model above
Cwsi = liminf H(X"|2") — H(X"[Y").

Moreover, this capacity can be achieved by one-way communication.

\

[SPS'20] Sharifian, Poostindouz and Safavi-Naini, “A Capacity-achieving One-way Key Agreement with Improved Finite

Blocklength Analysis,” ISITA 2020
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Let n be a fixed finite integer. Define S_7, as the largest key length of all
(e,0)—SK's generated by OW-SKA.

Previous capacity results imply that

Sy = nCygx —o(n).

Problem: Consider a source model (X,Y, Z) for OW-SKA.

Find more accurate finite-length approximations of 5’;; ?
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We proposed a OW-SKA protocol ITgrr and proved the following.

7

Theorem [SPS’20]: For the INID source model
Se, > H(X"|Z") — H(X"|Y") — v/nG1 —logn + O(1),

where G is a function of (|X|,¢,0).

\

Theorem [SPS’20]: For the |ID source model
S >n(H(X|Z) - H(X[Y)) —v/nGy —logn+ O(1),

where G is a function of (Pxyz,¢€,0).
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® 0.4F
5
~
G
0 — Capacity
0.3F — Interactive Upper Bound
— Interactive Lower Bound
—One-way Lower Bound (IID)
One-way Lower Bound (INID)
02 Il T T 1

10 20 30 40 50
Observation Length, n in Kilobits

Optimum finite-length bounds of interactive SKA, and the finite-length lower
bounds of OW-SKA protocol I1gy. Here e = 0 = 0.05, Py is uniform,

Y = BSC,(X), and Z = BSC,(Y), where a = 0.02, and b = 0.15. Note that in
this example, as X — Y — Z holds, both interactive and one-way bounds achieve

the WSK capacity.
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0.5
0.4+F
3
= 0.3+
e
n
0.2H
0.1k — Capacity
’ One-way Lower Bound (INID)
10 20 30 40 50

Observation Length, n in Kilobits

Finite-length performance of Iy for an INID source. Here e = 0 = 0.05, Px is

uniform 11D, Y;, = BSC,, (X,), and Z,, = BSCh, (Y,,), where
a, = 0.02 + @ sin (500) and b, = 0.15. Here X,, — Y,, — Z,, holds for all n,

and both interactlve and one-way SKA approaches achieve the WSK capacity.
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We observed that the computational cost of Il is
exponential so we proposed a second OW-SKA protocol, IIpy,
that has computational complexity O(nlogn) and proved its
finite-length analysis.

r

Theorem [PS’21]: For every § € (0, 1]

Uripy (n) = nCwsk — Vn™"1Grr(€e) — vV/nGpa(o) £ o(v/n),

where 7 =2 + 4.

\. J

[PS'21] Poostindouz and Safavi-Naini, “Second-Order Asymptotics for One-way Secret Key Agreement,” ISIT 2021.

Multiterminal SKA 38/65



Efficient OW-SKA Protocol Ilpg

One-way SKA using Polar coding

Alice Bob Eve

BE m BE
@X'—'C“Y\ZJY'—'C*’Z £

@ The computational complexity is O(nlogn)



Efficient OW-SKA Protocol Ilpg

One-way SKA using Polar coding

Alice Bob Eve
BE m BE
@ v BEGA y BEA A E

Polar F=H-XT Polar
Enc Dec
T

(Information Reconciliation)

X

@ The computational complexity is O(nlogn)
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Efficient OW-SKA Protocol Ilpy @ CALGARY

One-way SKA using Polar coding

Alice Bob Eve

Polar F=H-XT Polar

(Information Reconciliation)

Enc Dec
:
X X
[ Hash } S [ Hash | (Privacy Amplification)
K K

@ The computational complexity is O(nlogn)
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0.5

0.4+
£03
"
S
n 0.2 — Capacity
—35=0.6
—i=04
—6=0.3
0 Il Il Il 1
10 20 30 40 50

Observation Length n, in Megabits

Finite-length performance of OW-SKA Protocol ITpy for different ¢'s in,
(0.3,0.4,0.5,0.6). These values correspond to polarization kernel sizes of
(30,13,8,6) (in the same order). Here ¢ = o = 0.05, Py is uniform,
Y = BEC,(X), and Z = BEC,(Y'), where a = 0.1, and b = 0.67.
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Our Results

Finite-length Analysis of One-Way Two-party SKA

Proposed two new concrete protocol constructions for one-way SKA

Proved multiple finite-length lower bound on maximum key length

ST > nCwsk — O(V/n)

Proved a finite-length upper bound through new spectral entropies

Proved WSK capacity for the general case when variables are INID

Poostindouz and Safavi-Naini, “Second-Order Asymptotics for One-way Secret Key Agreement,” ISIT 2021.
Sharifian, Poostindouz and Safavi-Naini, “A Capacity-achieving One-way Key Agreement with Improved Finite Blocklength

Analysis,” ISITA 2020
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Review

Source Coding with Side Info | Privacy Amplification Lemma
o)
1O~ O
X X A
Xo
K K
. Iength( ) . length(F)
hmn—)oo I — Rl hmn—)oo —n > Rmin
Ry > H(X1|X2) rkey < H(X|Z) — Rumin
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O o 6
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@@@

7, X, 7, Xo
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SKA by Omniscience (When Z is known) W CALGARY

Z7X1 ZaXQ;Xl Z

Ry > H(X1|X22)
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SKA by Omniscience (When Z is known) W CALGARY

‘@

Z, X1, Xz Z, X5, X1

Ry > H(X,|X,2)
R2 > H(X2|X12)
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SKA by Omniscience (When Z is known) W CALGARY

‘@

Z, X1, Xz Z, X5, X1

Ry > H(X,|X,2)
R2 > H(X2|X12)

lim length(F")
n—00 n

Rmin - H(X1|X2Z) + H(X2|X1Z>

> Rmin
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SKA by Omniscience (When Z is known) W CALGARY

‘ @ Common randomness

Z, X1, Xz Z, X5, X1 CR= (X17X27Z)
o
K K

Ry > H(X1|X,2)
Ry > H(X2|X12)

lim length(F)
n—o00 n

Rmin - H(X1|X2Z) + H(X2|X1Z>

> Rmin
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SKA by Omniscience (When Z is known) W CALGARY

‘ @ Common randomness

7.X,Xs  Z,X0, X, CR = (X1,X2,2)
? ? By PAL, we have
K K

ke < [(X1, X2|Z) — Rumi
RlZH(X1|X2Z) " = ( 1y 2| ) min

Ry > H(X5|X12) Thus

Tkey _ H(Xl,XQIZ) — H(Xl‘XQZ)

length(F) SR - H(X2|X12)

lim
n—o00 n

Rmin - H(X1|X2Z) + H(X2|X1Z>

is an achievable key rate.
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PK Capacity CALGARY

When Z is known WSK capacity is called the PK capacity.

Cpx = H(X1,X3|Z) — H(X1|X2Z) — H(X2| X1 2)

Is there a simpler expression?

H(Xy) H(X>)
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PK Capacity @ CALGARY

Cpi =7

H(X1,X2|Z) — H(X1[X2Z) — H(X2|X1Z) = I(X1;X5]Z)
Thus

CPK = I(Xl; XQ‘Z)
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Multiterminal PK Capacity

PK capacity is

variable 7).

Theorem [CNO4]: For a given
multiterminal source model Px,, 7, the

Crx = H(Xm|Z) — Roo(Xm|Z)
where Rco(Xm|Z) is the minimum

asymptotic public communication sum
rate that is required for terminals in

<
® vy ®
Vi A

subset A to achieve omniscience (learn
X in addition to the common

Lemma [CNO04]:
Cwsk < Cpk

[CNO4] Csiszér and Narayan, IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3047-3061, Dec. 2004.
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WSK Capacity @ CALGARY

Recall: If X1 — Xy — Z, then

Cwsk = Cpx = 1(X1,X3|Z)

X X Z
O—@——0O
Can we extend this model to a multiterminal version?
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Example:

M ={1,2,3} & = {e12, €23} G=(M,E)

O—0

/

©)
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Example:
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Example:

M ={1,2,3} & = {e12, €23} G=(M,E)

O—0O0—0
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Example:

M ={1,2,3} E ={e12,e93} G=(M,E)
O—0O0—0
@ Vag Xy ="V

Xy = (Var, Vag)
X3 = V3
Z = (Zha, Za3)
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Wiretapped Tree over a
Pairwise Independent Network (PIN)

o Terminal set M ={1,2,...,m}
o Tree G = (M,¢E)
o {(Vij,Vji, Zij) }i<j are mutually independent

@ For all @ < j, Markov relation V;; — Vj; — Z;; holds

Theorem [PS21]: For any wiretapped Tree-PIN,

Cwsk = HZIED I(Vij; Viil Zsj).-

[PS21] Poostindouz and Safavi-Naini, “Secret key agreement in wiretapped Tree-PIN,” arXiv:1903.06134.
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Proof (Sketch):

We show that
Roo(Xm|2) = H(Xp|Z) — minI(Vij: Vil Zij).
Then, by
Cwsk(XmlZ) < Cpx(Xml|Z) = H(Xm|Z) — Roo(Xm|Z),

we have
Cwsk(Xm|Z) < Ilggnl(%jQ‘Gi’Zij)'

Finally, we show that the above rate is an achievable key rate.
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Example:

M ={1,2,3} E ={e12,e93} G=(M,E)
O—0O0—0
@ Vg Xy ="V

Xy = (Var, Vag)
X3 = V3
Z = (Zha, Za3)
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OO
D

/ E

@ Vi
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O—=—0O

Sa3

©)

@ Pairwise key agreement Sis,S12

Steps:
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Sii = Sijla

Steps:
@ Pairwise key agreement Sis,S12

@ Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~n X minI(V;j; V]Z‘ZZ])
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Achieving WSK capacity W CALGARY

Fy = Siy @ S

Steps:
@ Pairwise key agreement Sis,S12

@ Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~n X minI(V;j; VTL‘ZZ])

@ XOR propagation F» = Sf'1v2 >, 572/3
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Achieving WSK capacity W CALGARY

Fy = Siy @ S

Steps:
@ Pairwise key agreement Sis,S12

@ Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~n X minI(V;j; VTL‘ZZ])

@ XOR propagation F» = Sf'1v2 >, 572/3
@ Key calculation K = 57;2 = g;g @ Iy
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Wiretapped Pairwise Independent Network (PIN)

o Graphs (with loops) G = (M, €)

o {(Vij,Vji, Zij) }i<j are mutually independent

@ For all @ < j, Markov relation V;; — Vj; — Z;; holds

s '

Theorem [PS21]: For any wiretapped PIN, the WSK capacity is

1
Cwsk = mm <|73| — 1) | Z I(Vij; Vil Zij)
1<) s.t.
(4,7) crosses P

[PS21] Poostindouz and Safavi-Naini, “Secret key agreement in wiretapped Tree-PIN,” arXiv:1903.06134.
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Z34
V3o Vi
5 @

If 1(Vij; Vis| Zi;) = % for all 4, j then, for P = {{1}, {2}, {3}, {4}}

Cwsk <
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n=~6v and X = length(S;;) =3v —e¢
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Achieving WSK Capacity by Steiner tree packin CALGARY

n=~6v and X = length(S;;) =3v —e¢

oeo O cmm— O o o O e— O O e— O
oeo o o o ) O s O o o
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Achieving WSK Capacity by Steiner tree packin CALGARY

n=~6v and X = length(S;;) =3v —e¢

=0  o—o
00-1.

length(K') = 4v — O(e)

o]
(¢]

[e]
o
[¢]
o
|
[e]
[e]
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Achieving WSK Capacity by Steiner tree packin CALGARY

n=~6v and X = length(S;;) =3v —e¢

oeo O cmm— O o o O e— O O e— O
oeo o o o ) O s O o o

length(K') = 4v — O(e)

ey _ i length(K)
n—00 n
v -0 2
v—00 (Y% 3
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SKA in Wiretapped Pairwise Independent Networks

o Proved WSK capacity of wiretapped Tree-PIN

@ Proposed an optimum capacity achieving SKA protocol
o Proved WSK capacity of wiretapped PIN when A = M
o Proposed an SKA protocol using Steiner Tree Packing
o

Proved WSK capacity of multiple generalizations
(e.g., 3 a non-cooperating compromised terminal)

Poostindouz and Safavi-Naini, “Wiretap Secret Key Capacity of Tree-PIN,” ISIT 2019.

Poostindouz and Safavi-Naini, “Secret Key Agreement in Wiretapped Tree-PIN,” arXiv:1903.06134.
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I Public Discussion F I
Alice Bob Eve
‘/1” V2” gn
Vy
K K.
1 9 ‘/1

Alice can send adaptive channel input symbols.
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Theorem [AC93]: When the channel W is degraded

Cwsi (W) = max H(V4|Z) — H(Vi|V3).

Py,

Moreover, this capacity can be achieved without adaptive inputs.

\.

[AC93] Ahlswede and Csiszar, IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121-1132, Jul. 1993.
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X, Y Vi=(X1,Y1) Vo = (X, Y5)
3
Y/ Y2/
= (X3,Y3)
Vi= (X4, Y1) &
® @

e "
W= Py ix &) N

Poostindouz and Safavi-Naini, “A channel model of transceivers for multiterminal secret key agreement,” ISITA 2020.
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The SKA Protocol In Channel Model

Secret Key Agreement Protocol

1) =
F' 3

UNIVERSITY OF

CALGARY

8@

1/2,t Ym,t

[0 17

Public Communication F!

Multiterminal SKA
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A simple example (non-wiretapped)

Xl - I/I/L"} _}/’1
X -l Way v,
X5 = Y3
w
W =Py 1 x The model can be represented by a

directed graph G = (M, &), where

= Py 1x, - Pyy|x,
M= {1,2,3} and £ = {6271,6173}.
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Polytree-PIN

Let W= Pzyyixm = Py Xm 21X mvm
There exists a polytree G = (M, ) that

defines P, as a pairwise independent
Yl X m - P . P @Xl,ﬁ Xo4@
network (PIN) of point-to-point channels: N

W = Py xuPz1x v

= H PYz‘leji Pz1x v
eijeg
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Polytree-PIN

with independent leakage

W = Pryyixm = PyuixuPzivi

Z = (Zij| €ij € 5) @Xm Xm@

X34Y4'5

Xij — Y]z — Zij holds for all €ij € & \
Yzz \%Z\'z{gé/ @

W =Py xuPziva

H Yij| X Zz'j|in

ei; €E
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Polytree-PIN

with independent leakage

Theorem: WSK Capacity of Polytree-PIN
with independent leakage is given by @Xu XH@

Cf/IA/SK(W) g}l{&x Eneljle/[ I(Xij; Yl Zi). y“ fx;‘/ @
M eijegA Zus

Moreover, this capacity can be achieved
without adaptive inputs.

Poostindouz and Safavi-Naini, “Secret Key Capacity of Wiretapped Polytree-PIN,” ITW 2021.
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Multiterminal SKA in Wiretapped Network of Transceivers

Introduced the general multiterminal channel model of Transceivers
Proved Upper and Lower bounds on the SK, PK, and WSK capacities
Proved the nonadaptive SK capacity of general Transceivers

Proved the WSK capacity of Polytree-PIN Model

e 6 o o

Poostindouz and Safavi-Naini, “Secret Key Capacity of Wiretapped Polytree-PIN,” ITW 2021.
Poostindouz and Safavi-Naini, “Multiterminal Secret Key Agreement in Wiretapped Transceiver Channel Model,” to be
submitted to Entropy.

Poostindouz and Safavi-Naini, “A channel model of transceivers for multiterminal secret key agreement,” ISITA 2020.
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Thanks for your attention!



