
One-Time Pad (OTP) Implementation in the Linux
Kernel

Shoukat Ali

University of Calgary

shoukat.ali@ucalgary.ca

March 20, 2020

Shoukat Ali (UOC) OTP Implementation March 20, 2020 1 / 27



Outline

1 One-Time Pad (OTP)
Background
Introduction
Characteristic of OTP
Example
Perfect Secrecy

2 User-space vs Kernel-space
User-space and Kernel-space
Why User-space?

Why Kernel-space?
Memory Isolation
Data encryption

3 Loadable Kernel Module (LKM)
Introduction
Making LKM
Simple Example

4 OTP Implementation
Our Implementation

Shoukat Ali (UOC) OTP Implementation March 20, 2020 2 / 27



Background

G. Vernam invented a cipher in 1917 for teletype communication

G. Vernam and J. Mauborgne (U.S. Army Captain) developed OTP

The famous hot line between the White House and the Kremlin

The pencil-and-paper versions used in diplomatic correspondence

Shoukat Ali (UOC) OTP Implementation March 20, 2020 3 / 27



Introduction

Suppose K ,M, and C are the set of keys, messages, and ciphertexts,
respectively

In OTP cipher, encryption and decryption operations are performed
as follows

In encryption, M ⊕ K = C
In decryption, C ⊕ K = M
Where ⊕ represents the Exclusive OR operation

Encryption and decryption operations very fast

Shoukat Ali (UOC) OTP Implementation March 20, 2020 4 / 27



Characteristic of OTP

The OTP key should be truly random

The OTP key should be at least of the same length as the message

The OTP key should be used only once

Only two copies of the OTP key should exist

Both copies of the OTP are destroyed immediately after use

Shoukat Ali (UOC) OTP Implementation March 20, 2020 5 / 27



Example

Figure: Human Language

Shoukat Ali (UOC) OTP Implementation March 20, 2020 6 / 27



OTP Security

Is OTP secure?

What is a secure cipher?

Assume that the attacker is capable of seeing only the cipher-text

Shoukat Ali (UOC) OTP Implementation March 20, 2020 7 / 27



Shanon (Information-theoretic) Security

Idea: Cipher-text should not reveal any information about the
plain-text/message

Definition-1

A cipher has perfect secrecy if Pr [m|c] = Pr [m], for all m ∈ M and c ∈ C ,
where M is the set of plain-text and C is the set of cipher-text.

Definition-2

A cipher has perfect secrecy if for all m0,m1 ∈ M such that m0 and m1

are of same length and for all c ∈ C we have

Pr
[
Enc(m0, k) = c

]
= Pr

[
Enc(m1, k) = c

]
where k ∈ K is chosen randomly.

Shoukat Ali (UOC) OTP Implementation March 20, 2020 8 / 27



Shanon (Information-theoretic) Security

Idea: Cipher-text should not reveal any information about the
plain-text/message

Definition-1

A cipher has perfect secrecy if Pr [m|c] = Pr [m], for all m ∈ M and c ∈ C ,
where M is the set of plain-text and C is the set of cipher-text.

Definition-2

A cipher has perfect secrecy if for all m0,m1 ∈ M such that m0 and m1

are of same length and for all c ∈ C we have

Pr
[
Enc(m0, k) = c

]
= Pr

[
Enc(m1, k) = c

]
where k ∈ K is chosen randomly.

Shoukat Ali (UOC) OTP Implementation March 20, 2020 8 / 27



Shanon (Information-theoretic) Security

Idea: Cipher-text should not reveal any information about the
plain-text/message

Definition-1

A cipher has perfect secrecy if Pr [m|c] = Pr [m], for all m ∈ M and c ∈ C ,
where M is the set of plain-text and C is the set of cipher-text.

Definition-2

A cipher has perfect secrecy if for all m0,m1 ∈ M such that m0 and m1

are of same length and for all c ∈ C we have

Pr
[
Enc(m0, k) = c

]
= Pr

[
Enc(m1, k) = c

]
where k ∈ K is chosen randomly.

Shoukat Ali (UOC) OTP Implementation March 20, 2020 8 / 27



Proof OTP

Using Definition-2

Proof

∀m, c

Pr
[
Enc(m, k) = c

]
=

No. of keys in K such that Enc(m, k) = c

Total no. of keys in K

we know that k ⊕m = c =⇒ k = m ⊕ c

Pr
[
Enc(m, k) = c

]
=

1

Total no. of keys in K

Shoukat Ali (UOC) OTP Implementation March 20, 2020 9 / 27



User-space and kernel-space

User applications are executed in user-space and see a subset of
machine’s available resources

An elevated system state where full access to all machine’s resources
is available is referred to as kernel-space

Figure: An overview of the user-space and kernel-space

Shoukat Ali (UOC) OTP Implementation March 20, 2020 10 / 27



User-space and kernel-space

User applications are executed in user-space and see a subset of
machine’s available resources

An elevated system state where full access to all machine’s resources
is available is referred to as kernel-space

Figure: An overview of the user-space and kernel-space

Shoukat Ali (UOC) OTP Implementation March 20, 2020 10 / 27



User Applications

Text editor, spreadsheet, word processing, audio and video players,
web browser, etc. are some of the user applications

Most of the applications that we use are executed in user-space

Shoukat Ali (UOC) OTP Implementation March 20, 2020 11 / 27



Why User-space?

User-space programs are inherently safe because they run in protected
memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls

Shoukat Ali (UOC) OTP Implementation March 20, 2020 12 / 27



Why User-space?

User-space programs are inherently safe because they run in protected
memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls

Shoukat Ali (UOC) OTP Implementation March 20, 2020 12 / 27



Why User-space?

User-space programs are inherently safe because they run in protected
memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls

Shoukat Ali (UOC) OTP Implementation March 20, 2020 12 / 27



Why User-space?

User-space programs are inherently safe because they run in protected
memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls

Shoukat Ali (UOC) OTP Implementation March 20, 2020 12 / 27



Why User-space?

User-space programs are inherently safe because they run in protected
memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls

Shoukat Ali (UOC) OTP Implementation March 20, 2020 12 / 27



Why Kernel-space?

Kernel-space programs can handle interrupts

Kernel-space programs require less context switching

Kernel-space programs have lower-level access to system resources

Shoukat Ali (UOC) OTP Implementation March 20, 2020 13 / 27



Why Kernel-space?

Kernel-space programs can handle interrupts

Kernel-space programs require less context switching

Kernel-space programs have lower-level access to system resources

Shoukat Ali (UOC) OTP Implementation March 20, 2020 13 / 27



Why Kernel-space?

Kernel-space programs can handle interrupts

Kernel-space programs require less context switching

Kernel-space programs have lower-level access to system resources

Shoukat Ali (UOC) OTP Implementation March 20, 2020 13 / 27



Kernel-space: Buts

No GNU C library (glibc)

Kernel-space programs can access the whole physical memory which
implies no memory protection

Kernel-space programs can crash the whole system

Kernel-space programs debugging is not as easy as user application

Kernel-space programs have no automatic clean-up

Shoukat Ali (UOC) OTP Implementation March 20, 2020 14 / 27



Memory Isolation

A key security feature of modern operating systems is memory
isolation

A user-space process cannot access other processes memory
User-space processes cannot access the kernel memory

Modern processors provide supervisor bit

User mode: user application is in execution
Supervisor mode: Operating system is in execution

Shoukat Ali (UOC) OTP Implementation March 20, 2020 15 / 27



Data encryption

There are two way of performing data encryption

Application level (user-space)

Some of the examples are; HTTPS, PGP, S/MIME, etc.

Operating system (OS) level (kernel-space)

Some of the examples are; dm-crypt, encfs, IPsec, etc.

Shoukat Ali (UOC) OTP Implementation March 20, 2020 16 / 27



Introduction to LKM

The Linux kernel supports Loadable Kernel Module (LKM) mechanism

The LKM provides the following advantages

Loading module at run-time
Save kernel memory by loading module when needed and unloading
when not needed

Hence, new features/code can be added while the operating system is
running

Shoukat Ali (UOC) OTP Implementation March 20, 2020 17 / 27



Making LKM

Some of the commands used in the making of LKM are given below

insmod: to insert/load an LKM into the kernel

rmmod: to remove/unload an LKM from the kernel

lsmod: to list currently loaded LKMs

modinfo: to display contents of .modinfo section in an LKM object
file

Shoukat Ali (UOC) OTP Implementation March 20, 2020 18 / 27



A simple example

#include <linux/module.h> /* Needed by all modules */

#include <linux/kernel.h> /* Needed for KERN_INFO */

static int hello_init(void){

printk(KERN_INFO "Hello World! I am becoming part of 

the Linux kernel .\n");

return 0;

}

static void hello_exit(void){

printk(KERN_INFO "Bye World! I am leaving the Linux 

kernel .\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Shoukat Ali");

MODULE_DESCRIPTION("The simplest kernel module ");

Listing 1: hello km.c

Shoukat Ali (UOC) OTP Implementation March 20, 2020 19 / 27



A simple example (Cont.)

We defined two functions in the kernel module

hello init() is invoked when the module is inserted into the kernel
hello exit() is invoked when the module is removed from the kernel

Shoukat Ali (UOC) OTP Implementation March 20, 2020 20 / 27



A simple example (Cont.)

We have used the following macros in the kernel module

module init() specifies the function to be executed on module
insertion
module exit() specifies the function to be executed on module
removal
MODULE LICENSE() specifies to kernel the license of module and
without such declaration, the kernel complains
MODULE AUTHOR() specifies the author of module
MODULE DESCRIPTION() specifies the functionality of module

Shoukat Ali (UOC) OTP Implementation March 20, 2020 21 / 27



A simple example (Cont.)

The printk() function is similar to printf() function

The printk() outputs are written in a log i.e., /var/log/syslog

The dmesg command parses the same log

There are eight macros in linux/kernel.h and in our example we
have used KERN INFO only which means information

Shoukat Ali (UOC) OTP Implementation March 20, 2020 22 / 27



A simple example (Cont.)

To compile our module hello km.c, we have

To create a Makefile in same directory of our module. Example is
given in the next slide
Type the make command in terminal
The successful compilation will generate different files and one of them
is .ko which represents the LKM

Shoukat Ali (UOC) OTP Implementation March 20, 2020 23 / 27



A simple example (Cont.)

obj -m:=hello.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Listing 2: Makefile

-C instructs the make command to change the directory

M = $(PWD) instructs the compiler on the source code path

Shoukat Ali (UOC) OTP Implementation March 20, 2020 24 / 27



Demo

Let’s do a quick demo of what have done so far

Shoukat Ali (UOC) OTP Implementation March 20, 2020 25 / 27



Our Implementation

We assume that it is possible to obtain random bytes in advance

It is easier for adversary to attack user-space than kernel-space

Kernel-space requires authorized access only

Hence, kernel-space is a good place for the set K in OTP

Shoukat Ali (UOC) OTP Implementation March 20, 2020 26 / 27



Thanks for your attention!
Questions

Shoukat Ali (UOC) OTP Implementation March 20, 2020 27 / 27


	One-Time Pad (OTP)
	Background
	Introduction
	Characteristic of OTP
	Example
	Perfect Secrecy

	User-space vs Kernel-space
	User-space and Kernel-space
	Why User-space?
	Why Kernel-space?
	Memory Isolation
	Data encryption

	Loadable Kernel Module (LKM)
	Introduction
	Making LKM
	Simple Example

	OTP Implementation
	Our Implementation


