Stern-Like Zero-Knowledge Protocol

Yanhong Xu

iCORE Information Security Laboratory Department of Computer Science University of Calgary, Canada

Feb 28, 2020

★ ロメ (4 御) > (唐) > (唐) → 唐

1 [Zero-Knowledge Proof System](#page-2-0)

2 [Stern's Protocol](#page-20-0)

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 2/21

E

イロト イ押ト イヨト イヨト

Outline

1 [Zero-Knowledge Proof System](#page-2-0)

2 [Stern's Protocol](#page-20-0)

³ [Decomposition and Extension](#page-35-0)

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 3/21

目

 $A \Box B$ A

Suppose I have a deck of card, and randomly pick one from it.

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:

14 E K 4 E K

 QQ

Suppose I have a deck of card, and randomly pick one from it.

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
	- Reveal the card to you.

Suppose I have a deck of card, and randomly pick one from it.

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
	- Reveal the card to you.
	- What if I do not want to show you which 1 out of 13 cards I have picked?

14 E K 4 E K

Suppose I have a deck of card, and randomly pick one from it.

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
	- Reveal the card to you.
	- What if I do not want to show you which 1 out of 13 cards I have picked?
	- Reveal the remaining 39 cards to you!

Is everyone convinced that I have the MAGIC ability?

• What if I am just lucky and guess it correct?

4 0 F

 QQ

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.

4 0 F

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.
- The success probability of guessing them all correct is $\frac{1}{4^{100}} = 2^{-200}$.

 QQ

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.
- The success probability of guessing them all correct is $\frac{1}{4^{100}} = 2^{-200}$.

This is an actually interactive zero-knowledge proof.

- Completeness: if my claim is TRUE, then all of you will accept my claim.
- Soundness: if my claim is FALSE, then none of you accept my claim.
- Zero-Knowledge: No knowledge about which specific card I have picked.

Note that the protocol (without repetition) has soundness error $1/4$. However, the protocol (with repetition 100) has soundness error 2^{-200} .

イロト イ押ト イヨト イヨト

 QQ

Preliminary

- NP relation $\rho \subseteq \{0,1\}^* \times \{0,1\}^*$: $(x, w) \in \rho$ is recognizable in polynomial time.
- NP language \mathcal{L}_{ρ} : $\{x : \exists w \text{ s.t. } |w| = \text{poly}(|x|) \land (x, w) \in \rho\}.$
- PPT stands for probabilistic polynomial time.

 QQ

イロト イ何 トイヨト イヨト ニヨ

Interactive Zero-Knowledge Proof System

In 1985, Goldwasser, Micali and Rackoff [\[1\]](#page-42-0) introduced the interactive zero-knowledge proof (ZKP).

Statment : $x \in \mathcal{L}_o$

• P wants to convinces that $x \in \mathcal{L}_o$.

Interactive Zero-Knowledge Proof System

In 1985, Goldwasser, Micali and Rackoff [\[1\]](#page-42-0) introduced the interactive zero-knowledge proof (ZKP).

Statment : $x \in \mathcal{L}_o$

• P wants to convinces that $x \in \mathcal{L}_{\rho}$.

Interactive Zero-Knowledge Proof System

In 1985, Goldwasser, Micali and Rackoff [\[1\]](#page-42-0) introduced the interactive zero-knowledge proof (ZKP).

Statment : $x \in \mathcal{L}_o$

- P wants to convinces that $x \in \mathcal{L}_{\rho}$.
- V is convinced about the fact or reject.

Interactive Zeor-Knowledge Proof System (Cont.)

- P is PPT, V is deterministic polynomial time.
- \bullet $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for the language \mathcal{L}_o if satisfies perfect completeness and soundness:
	- Completeness. For any $x \in \mathcal{L}_\rho$: $\Pr[\text{Out}_{\mathcal{V}}\langle \mathcal{P}(x,w),\mathcal{V}(x)\rangle=1]=1.$
	- (Statistical) Soundness. For any $\gamma \notin \mathcal{L}_o$ and for any $\widehat{\mathcal{P}}$: $Pr[Out_{\mathcal{V}}(\widehat{\mathcal{P}}(\mathsf{v}), \mathcal{V}(\mathsf{v}))] = 1] \approx 0.$
		- ⇒ Proof system.
	- (Computational) Soundness. For any $y \notin \mathcal{L}_{\rho}$ and for any PPT $\widehat{\mathcal{P}}$: $Pr[Out_{\mathcal{V}}\langle \widehat{\mathcal{P}}(\gamma), \mathcal{V}(\gamma)\rangle = 1] \approx 0.$

 \Rightarrow Argument system.

• Zero-Knowledge: nothing beyond the validity of the statement is revealed.

 Ω

Zero-Knowledge-Simulation Paradigm

Zero-Knowledge-Simulation Paradigm

- Statistical zero-knowledge : for any V , the simulated proof is indistinguishable from the real proof.
- Computational zero-knowledge: for any PPT $\mathcal V$ the simulated proof is indistinguishable from the real proof.

Proof of Knowledge

Consider the following example.

- Let q be prime, and a group $G = \langle g \rangle$, where g is the generator to the group.
- Suppose the Discrete Logarithm problem is hard for this group.
- Consider the language $\mathcal{L} = \{y : \exists x \in \mathbb{Z}_q \text{ s.t. } y = g^x\}.$
- Let $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for \mathcal{L} .
- Trivial to show $y \in \mathcal{L}$; (why?)

KED KARD KED KED E VOOR

Proof of Knowledge

Consider the following example.

- Let q be prime, and a group $G = \langle g \rangle$, where g is the generator to the group.
- Suppose the Discrete Logarithm problem is hard for this group.
- Consider the language $\mathcal{L} = \{y : \exists x \in \mathbb{Z}_q \text{ s.t. } y = g^x\}.$
- Let $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for \mathcal{L} .
- Trivial to show $y \in \mathcal{L}$; (why?)
- More desirable to show possession/knowledge of x .
	- \rightarrow Proof of knowledge (Statistical soundness)
	- \rightarrow Argument of knowledge (Computational soundness)

Outline

1 [Zero-Knowledge Proof System](#page-2-0)

2 [Stern's Protocol](#page-20-0)

³ [Decomposition and Extension](#page-35-0)

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 11/21

画

 2990

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Stern's Protocol[-Z](#page-42-1)KAoK

• In 1996, Stern [4] introduced a three-move zero-knowledge argument of knowledge (ZKAoK) for the Syndrome Decoding (SD) problem in the coding theory.

Definition (SD problem)

Given uniformly random $\mathbf{A} \in \mathbb{Z}_2^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_2^n$. Let $w < m$ be an integer. The SD problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\text{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$ mod 2.

$$
\bullet \ \rho_{\mathrm{stern}}=\{((\textbf{A},\textbf{y}),\textbf{x})\in \mathbb{Z}_{2}^{n\times m}\times \mathbb{Z}_{2}^{n}\times \mathbb{Z}_{2}^{m}: (\mathrm{wt}(\textbf{x})=\textit{w})\wedge (\textbf{A}\cdot \textbf{x}=\textbf{y} \; \text{mod}\; 2)\}
$$

KED KARD KED KED E VOOR

Stern's Protocol[-Z](#page-42-1)KAoK

• In 1996, Stern [4] introduced a three-move zero-knowledge argument of knowledge (ZKAoK) for the Syndrome Decoding (SD) problem in the coding theory.

Definition (SD problem)

Given uniformly random $\mathbf{A} \in \mathbb{Z}_2^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_2^n$. Let $w < m$ be an integer. The SD problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\text{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$ mod 2.

$$
\bullet\;\; \rho_{\mathrm{stern}}=\{((\textbf{A},\textbf{y}),\textbf{x})\in \mathbb{Z}_{2}^{n\times m}\times \mathbb{Z}_{2}^{n}\times \mathbb{Z}_{2}^{m}:(\mathrm{wt}(\textbf{x})=w)\wedge (\textbf{A}\cdot \textbf{x}=\textbf{y}\; \text{mod}\; 2)\}
$$

Stern's Idea

- For $\pi \in \mathcal{S}_m$, $(\mathbf{x} \in \{0,1\}^m$ satisfies $\text{wt}(\mathbf{x}) = w) \Leftrightarrow (\pi(\mathbf{x}) \in \{0,1\}^m$ also does)
- $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2 \Leftrightarrow \mathbf{A} \cdot (\mathbf{x} + \mathbf{r}) = \mathbf{y} + \mathbf{A} \cdot \mathbf{r} \mod 2.$
- Commitment scheme COM: commit to a value and later reveal (decommit it).
	- Hiding and binding.

K ロ > K 個 > K ミ > K ミ > - ミ - K Q Q Q

- Common input: **A**, **y**.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

G.

 Ω

イロト イ押ト イヨト イヨ

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

Prover Verfier

1. Pick
$$
\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send
\n($\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$), where
\n $\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2)$;
\n $\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r}))$;
\n $\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r}))$.

G.

 Ω

イロト イ押ト イヨト イヨト

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

1. Pick
$$
\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send
\n($\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$), where
\n $\begin{cases}\n\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2); \\
\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r})); \\
\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r})).\n\end{cases}$

Prover Verfier

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1,2,3\}.$

4 0 F

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$ and \mathcal{B}

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

Prover Verfier

1. Pick
$$
\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send
\n($\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$), where
\n $\begin{cases}\n\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2); \\
\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r})); \\
\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r})).\n\end{cases}$

2. Send a challenge
$$
ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}
$$
.

3. If $ch = 1$, reveal c_2 and c_3 . Send $\mathbf{v} = \pi(\mathbf{x})$ and $\mathbf{w} = \pi(\mathbf{r})$.

 Ω

イロト イ押ト イヨト イヨト

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

Prover Verfier

1. Pick
$$
\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send
\n $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
\n $\begin{cases}\n\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2); \\
\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r})); \\
\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r})).\n\end{cases}$

3. If $ch = 1$, reveal c_2 and c_3 . Send $\mathbf{v} = \pi(\mathbf{x})$ and $\mathbf{w} = \pi(\mathbf{r})$.

2. Send a challenge
$$
ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}
$$
.

Check if
$$
\mathbf{v}\in\mathbb{Z}_2^m
$$
, $\mathrm{wt}(\mathbf{v})=w$, and

$$
\begin{cases}\nc_2 = \text{COM}(\mathbf{w}); \\
c_3 = \text{COM}(\mathbf{v} + \mathbf{w}).\n\end{cases}
$$

æ

∢ ロ ▶ 《 何 ▶ 《 戸 ▶ 《 戸

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

Prover Verfier

1. Pick
$$
\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send
\n($\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$), where
\n $\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2)$;
\n $\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r}))$;
\n $\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r}))$.

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}.$

3. If $ch = 2$, reveal c_1 and c_3 . Send π and $z = x + r$.

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 13/21

æ

 Ω

イロト イ押ト イヨト イヨ

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover Verfier 1. Pick $\mathsf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send (c_1, c_2, c_3) , where \int $\overline{\mathcal{L}}$ $\mathbf{c}_1 = \text{COM}(\pi,\mathbf{A}\cdot\mathbf{r} \text{ mod } 2);$ $c_2 = \text{COM}(\pi(r));$ c_3 = COM(π (**x** + **r**)). 3. If $ch = 2$, reveal c_1 and c_3 . Send π and $z = x + r$. 2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}.$ Check that $\sqrt{ }$ $\left\vert \right. ,$ \mathcal{L} $\mathbf{c}_1 = \text{COM}(\pi,\mathbf{A}\cdot\mathbf{z}-\mathbf{y} \text{ mod } 2);$ c_3 = COM($\pi(z)$).

 Ω

イロト イ押ト イヨト イヨト

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $A \cdot x = y$ mod 2.

Prover Verfier

1. Pick
$$
\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m
$$
, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send
\n $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
\n $\mathbf{c}_1 = \text{COM}(\pi, \mathbf{A} \cdot \mathbf{r} \mod 2);$
\n $\mathbf{c}_2 = \text{COM}(\pi(\mathbf{r}));$
\n $\mathbf{c}_3 = \text{COM}(\pi(\mathbf{x} + \mathbf{r})).$

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}.$

3. If $ch = 3$, reveal c_1 and c_2 . Send π and $\mathbf{s} = \mathbf{r}$.

æ.

 QQ

イロト イ押ト イヨト イヨ

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $wt(x) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover Verfier 1. Pick $\mathsf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send (c_1, c_2, c_3) , where \int $\overline{\mathcal{L}}$ $\mathbf{c}_1 = \text{COM}(\pi,\mathbf{A}\cdot\mathbf{r} \text{ mod } 2);$ $c_2 = \text{COM}(\pi(r));$ c_3 = COM(π (**x** + **r**)). 3. If $ch = 3$, reveal c_1 and c_2 . Send π and $\mathbf{s} = \mathbf{r}$. 2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}$. Check that $\sqrt{ }$ J, \mathcal{L} $\mathbf{c}_1 = \text{COM}(\pi,\mathbf{A}\cdot\mathbf{s}\text{ mod }2);$ $c_2 = COM(\pi(s)).$

 Ω

イロト イ押ト イヨト イヨト

Analysis of Stern's Protocol

- Completeness.
- Soundness: soundness error 2/3.
- Statistical zero-knowledge: the commitment scheme COM, the masking vector **r**, and the permutation π .
- Argument of knowledge.

Repeat the protocol enough times to achieve negligible soundness error.

 QQ

Development

- In 2008, Kawachi et al. [\[2\]](#page-42-2) adapted Stern's protocol to the lattice setting by working with a.
	- $\bullet~~ \rho_{\rm ktx}=\{((\mathbf{A},\mathbf{y}),\mathbf{x})\in \mathbb{Z}_q^{n\times m}\times \mathbb{Z}_q^n\times \{0,1\}^m: ({\rm wt}(\mathbf{x})=w)\wedge (\mathbf{A}\cdot \mathbf{x}=0)$ **v** mod q)}
	- A restricted version of the Inhomogeneous Short Integer Solution(ISIS) problem.

Definition (ISIS $_{n,m,q,\beta}$)

Given uniformly random $\mathbf{A}\in \mathbb{Z}_q^{n\times m}$ and $\mathbf{y}\in \mathbb{Z}_q^n$. Let β be a real number. The ISIS problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\|\mathbf{x}\|_\infty \leq \beta$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$ mod q .

• Limited applications.

KED KARD KED KED E VOOR

Development

- In 2008, Kawachi et al. [\[2\]](#page-42-2) adapted Stern's protocol to the lattice setting by working with q.
	- $\bullet~~ \rho_{\rm ktx}=\{((\mathbf{A},\mathbf{y}),\mathbf{x})\in \mathbb{Z}_q^{n\times m}\times \mathbb{Z}_q^n\times \{0,1\}^m: ({\rm wt}(\mathbf{x})=w)\wedge (\mathbf{A}\cdot \mathbf{x}=0)$ **v** mod q)}
	- A restricted version of the Inhomogeneous Short Integer Solution(ISIS) problem.

Definition (ISIS $_{n,m,q,\beta}$)

Given uniformly random $\mathbf{A}\in \mathbb{Z}_q^{n\times m}$ and $\mathbf{y}\in \mathbb{Z}_q^n$. Let β be a real number. The ISIS problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\|\mathbf{x}\|_\infty \leq \beta$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$ mod q .

- Limited applications.
- In 2013, Ling et al. [\[3\]](#page-42-3) removed the restrictions on **x** and proposed a Stern-like zero-knowledge protocol for the ISIS problem.
	- Decomposition and extension.
	- Wide applications: policy-based signatures, group encryption, group signatures, and much more. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 15/21

Outline

1 [Zero-Knowledge Proof System](#page-2-0)

2 [Stern's Protocol](#page-20-0)

³ [Decomposition and Extension](#page-35-0)

 \Rightarrow

 298

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Decomposition and Extension

ZKAoK for Restricted SIS [\[2\]](#page-42-2)

ZKAoK for General SIS

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 17 / 21

Extension

Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \bmod q$ and $\mathbf{x} \in \{0, 1\}^m$.

Intermediate goal: $\mathsf{A}^{*} \cdot \mathsf{x}^{*} = \mathsf{y}$ mod q and $\mathsf{x}^{*} \in \{0,1\}^{m}$ and x^{*} has fixed hamming weight.

 \bullet Let B_{3m} be the set of all vectors in $\{0,1\}^{3m}$ such that each vector contains exactly m copies of 0, m copies of 1.

• Extend
$$
\mathbf{x} \in \{0,1\}^m
$$
 to $\mathbf{x}^* \in B_{2m}$.

• Observe that $wt(x^*) = m$.

 \equiv \cap α

Extension

Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \bmod q$ and $\mathbf{x} \in \{0, 1\}^m$.

Intermediate goal: $\mathsf{A}^{*} \cdot \mathsf{x}^{*} = \mathsf{y}$ mod q and $\mathsf{x}^{*} \in \{0,1\}^{m}$ and x^{*} has fixed hamming weight.

 \bullet Let B_{3m} be the set of all vectors in $\{0,1\}^{3m}$ such that each vector contains exactly m copies of 0, m copies of 1.

• Extend
$$
\mathbf{x} \in \{0,1\}^m
$$
 to $\mathbf{x}^* \in B_{2m}$.

- Observe that $wt(x^*) = m$.
- Extend $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ to $\mathbf{A}^* \in \mathbb{Z}_q^{n \times m}$ such that $\mathbf{A} \cdot \mathbf{x} = \mathbf{A}^* \cdot \mathbf{x}^*$ mod q. (how and why?)

A ZKAoK protocol for the ISIS problem with $\|\mathbf{x}\|_{\infty} = 1$.

KED KARD KED KED E VOOR

Decomposition

Let $\beta \in \mathbb{Z}^+$. Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \bmod q$ and $\mathbf{x} \in [0, \beta]^m$. Intermediate goal: $\mathbf{A}^* \cdot \mathbf{x}^* = \mathbf{y}$ mod q and \mathbf{x}^* is binary.

Define $\delta_\beta = \lfloor \log \beta \rfloor + 1$. Define the sequence $\beta_1, \ldots, \beta_{\delta_\beta}$ as follows.

$$
\beta_1 = \lceil \frac{\beta}{2} \rceil, \ \beta_2 = \lceil (\beta - \beta_1)/2 \rceil, \ \beta_3 = \lceil (\beta - \beta_1 - \beta_2)/2 \rceil, \dots, \beta_{\delta_\beta} = 1.
$$

Example. Let $\beta = 50$, then $\delta_{\beta} = 6$,

$$
\beta_1 = 25, \beta_2 = 13, \beta_3 = 6, \beta_4 = 3, \beta_5 = 2, \beta_6 = 1.
$$

Notice that $\sum_{i=1}^{6} \beta_i = \beta$.

KOD KARD KED KED ORA

Decomposition (cont.)

• Properties:
$$
\sum_{i=1}^{3} \beta_i = \beta
$$
. For any $b \in [0, \beta]$, there exists $b^{(1)}, \ldots, b^{(\delta_\beta)} \in \{0, 1\}$ such that $\sum_{i=1}^{\delta_\beta} \beta_i \cdot b^{(i)} = b$. Define $\text{idec}(b) = (b^{(1)}, \ldots, b^{(\delta_\beta)})^\top \in \{0, 1\}^{\delta_\beta}$.

 $\bullet\,$ For $m\in\mathbb{Z}^+$, define a matrix $\mathbf{G}_{m, \beta}\in\mathbb{Z}^{m\times m\delta_\beta}$ to be

$$
\mathbf{G}_{m,\beta} = \begin{bmatrix} \beta_1 \dots \beta_{\delta_{\beta}} & & & \\ & \ddots & & \\ & & \beta_1 \dots \beta_{\delta_{\beta}} \end{bmatrix}
$$

• For
$$
\mathbf{x} = (x_1, \ldots, x_m)^\top \in [0, \beta]
$$
, define
 $~ \text{vdec}(\mathbf{x}) = (\text{idec}(x)_1 \| \ldots \| \text{idec}(x)_m) \in \{0, 1\}^{m\delta_{\beta}}$.

• We then have $\mathbf{x} = \mathbf{G}_{m, \beta} \cdot \text{vdec}(\mathbf{x})$ mod q.

• Observe that $\mathsf{A}\cdot\mathsf{x}=\mathsf{A}\cdot\mathsf{G}_{m, \beta}\cdot$ vdec (x) mod $q\stackrel{\triangle}{=} \mathsf{A}^*\cdot$ vdec (x) mod $q.$

A ZKAoK protocol for the ISIS problem with $\|\mathbf{x}\|_{\infty} \leq \beta$

 $= 990$

Thank You

Thank you!

Any Questions?

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 21 / 21

G.

イロト イ押ト イヨト イヨト

S. Goldwasser, S. Micali, and C. Rackoff.

The knowledge complexity of interactive proof-systems (extended abstract).

In ACM STOC 1985, pages 291–304. ACM, 1985.

F A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In ASIACRYPT 2008, volume 5350 of LNCS, pages 372–389.

Springer, 2008.

S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications.

In PKC 2013, volume 7778 of LNCS, pages 107–124. Springer, 2013.

J. Stern.

A new paradigm for public key identification. IEEE Trans. Information Theory, 42(6):1757–1768, 1996.

Yanhong Xu (iCIS Lab) [Stern-Like ZK Protocol](#page-0-0) Feb 28, 2020 21/21

 QQ

イロト イ押ト イヨト イヨト