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Background

G. Vernam invented a cipher in 1917 for teletype communication

G. Vernam and J. Mauborgne (U.S. Army Captain) developed
one-time pad (OTP)

The famous hot line between the White House and the Kremlin

The pencil-and-paper versions used in diplomatic correspondence
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Introduction

Suppose K ,M, and C are the set of keys, messages, and ciphertexts,
respectively

In OTP cipher, encryption and decryption operations are performed
as follows

In encryption, M ⊕ K = C
In decryption, C ⊕ K = M
Where ⊕ represents the Exclusive OR operation

Encryption and decryption operations are very fast
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Characteristic of OTP

The OTP key should be truly random

The OTP key should be at least of the same length as the message

The OTP key should be used only once

Only two copies of the OTP key should exist

Both copies of the OTP are destroyed immediately after use
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Example

Figure: Human Language
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OTP Security

Is OTP secure?

What is a secure cipher?

Assume that the attacker is capable of seeing only the cipher-text
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Shanon (Information-theoretic) Security

Idea: Cipher-text should not reveal any information about the
plain-text

Definition-1

A cipher has perfect secrecy if Pr [m|c] = Pr [m], for all m ∈ M and c ∈ C ,
where M is the set of plain-text and C is the set of cipher-text.

Definition-2

A cipher has perfect secrecy if for all m0,m1 ∈ M such that m0 and m1

are of same length and for all c ∈ C we have

Pr
[
Enc(m0, k) = c

]
= Pr

[
Enc(m1, k) = c

]
where k ∈ K is chosen randomly.
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Proof OTP

Using Definition-2

Proof

∀m, c

Pr
[
Enc(m, k) = c

]
=

No. of keys in K such that Enc(m, k) = c

Total no. of keys in K

we know that k ⊕m = c =⇒ k = m ⊕ c

Pr
[
Enc(m, k) = c

]
=

1

Total no. of keys in K
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User-space and kernel-space

User applications are executed in user-space and see a subset of
machine’s available resources

An elevated system state where full access to all machine’s resources
is available is referred to as kernel-space

Figure: An overview of the user-space and kernel-space
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User Applications

Text editor, spreadsheet, word processing, audio and video players,
web browser, etc. are some of the user applications

Most of the applications that we use are executed in user-space
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Why User-space?

User-space programs run in protected memory

User-space processes are not allowed to interfere with kernel memory
or other user process memory

User-space processes do not bring down the entire operating system if
they crash

User-space programs can easily be debugged

But user-space processes have significant overhead when making
system calls
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Why Kernel-space?

Kernel-space programs can handle interrupts

Kernel-space programs require less context switching

Kernel-space programs have lower-level access to system resources
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Kernel-space: Buts

No GNU C library (glibc)

Kernel-space programs can access the whole physical memory which
implies no memory protection

Kernel-space programs can crash the whole system

Kernel-space programs debugging is not as easy as user-space
application

Kernel-space programs have no automatic clean-up
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RANDY

Using the OTP, the RANDY performs the following operations in
kernel-space

Data integrity

Authentication

Encryption/Decryption

Authenticated Acknowledgment
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Data Integrity: Wegman-Carter MAC

Let (S ,V ) be a secure one-time MAC over (K ,M, {0, 1}n) and
F : K × {0, 1}n −→ {0, 1}n be a secure PRF.

Definition: Wegman-Carter MAC

WC
(
(k1, k2),m

)
=

(
r ,F (k1, r)⊕ S(k2,m)

)
where (k1, k2) ∈ K ,m ∈ M and for random r ∈ {0, 1}n
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Authentication Protocol: Goals

To perform mutual authentication assuming that the server is trusted
and secure

To establish (shared) session longterm key that will serve as the
long-term part for the Wegman-Carter (WC) key in a session

To decide the pad/key for encryption/decryption and the short-term
part for the WC key in a session

To protect against an active network attacker

To protect the server against the random exhaustion attack
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Authentication Protocol: Assumptions

The client is in hostile environment

The client always initiates the connection

Both the client and server always use fresh pad/key from the shared
pool of randomness

If authentication fails, then the server can return the pads/keys used
during authentication to the shared pool of randomness
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Authentication Protocol: In Picture

Client Server
M1

M2

Figure: Mutual Authentication Protocol
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Authentication Protocol: Some details

Authentication is based on shared password and randomness pool

Password is never transmitted on wire

The Password-Based Key Derivation Function (PBKDF2) is used to
derive a key from the password

Wegman-Carter style of Message Authentication Code (MAC) is used
of data integrity

From the pool of randomness, both the communicating parties use
one-time pads not only from its parity but also the other party.
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Encryption/Decryption

The encryption and data integrity operations are perfromed as follows

cipher-text = plain-text ⊕ Pad

WC
(
(k1, k2),m

)
where k2 is the shared session longterm key, k1 is

short-term key, and m is the cipher-text in Wegman-Carter MAC

The data authenticity and decryption are performed accordingly
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Authenticated Acknowledgment

To restrict the (active) network attacker’s capability by allowing at
most some fixed amount of unacknowledged data in-flight per socket

The sender transmits next data only after the reception and
verification of authenticated acknowledgment (auth ack) for in-flight
data on that socket

The receiver knows when to transmit auth ack
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Authenticated Acknowledgment: In Picture

Sender Receiver

in-flight datai <= fixed amount

auth_acki

in-flight datai + 1 <= fixed amount

Figure: Overview of Data transmission and authenticated acknowledgment

Shoukat Ali, Ryan Henry, Joel Reardon, Rei Safavi-Naini (UofC)RANDY Feb. 26, 2021 23 / 29



Our Implementation: Overview

User Program Shared library
(LD_PRELOAD)

RANDY socket
functions

     System Calls

ioctl()  
system calls

User-space

Kernel Module

Kernel-space

HardwareNetwork Interface
Card RANDY Store

Kernel Socket

Figure: Overview of RANDY
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Our Implementation: RANDY store

A storage device that is filled with randomness

The client and server use different parity

For encryption, a communicating party (client or server) uses
one-time pads from its parity

for decryption, a communicating party (client or server) uses one-time
pads from the parity of other party
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Our Implementation: User-space

Some of the operations performed in user-space are as follows

Loading the kernel module

Taking user password and writing it in kernel-space

Executing user application

System calls to RANDY socket
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What is LKM?

The Linux kernel supports Loadable Kernel Module (LKM) mechanism

The LKM provides the following advantages

Loading module into base kernel at run-time
Save kernel memory by loading module when needed and unloading
when not needed

Hence, new features/code can be added while the operating system is
running
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Our Implementation: Kernel-space

Some of the operations – other than data integrity, authentication,
encryption/decryption, and auth ack – performed by our kernel module are
as follows

Copying user message into kernel-space

Fetching and managing the One-Time pad

Managing (RANDY) socket

Purging sensitive information
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Thanks for your attention!
Questions?
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