Transceivers Model–A New Model for Multiterminal Secret Key Agreement

Alireza Poostindouz, and Reihaneh Safavi-Naini

Information Security Talk Dec. 4, 2020

K ロ K K d K K K B K G H X H B

 $2Q$

Overview

- Motivation
- Intro to Secret Key Agreement (SKA)
- Definitions and Background
- Our results
- Future Work

Paper: Alireza Poostindouz, Reihaneh Safavi-Naini, "A Channel Model of Transceivers for Multiterminal Secret Key Agreement," 2020 International Symposium on Information Theory & Applications (ISITA). Kapolei, Hawai'i, USA, Oct. 2020. [Full version is available online via [arxiv.org:2008.02977\]](https://arxiv.org/abs/2008.02977)

Why information theoretic key agreement?

- Gives **provable security** guarantee against adversaries with unlimited computational power
- Raises many new insights and gives a powerful framework to study the fundamental limits of information networks
- Has many applications based on practical physical-layer assumptions
- Enables quantum-safe communication

K ロンバイ (足) 시 (足) 시 (足) 시 (足)

 2990

Background

Background - Information theory

Entropic Measures of Information

Shannon Entropy

$$
H(X) = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{1}{P_X(x)}
$$

Joint Entropy

$$
H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{XY}(x,y) \log_2 \frac{1}{P_{XY}(x,y)}
$$

Conditional Entropy $H(X, Y) = H(X) + H(Y|X)$

Mututal Information $I(X; Y) = H(X, Y) - H(X|Y) - H(Y|X)$

Background - Information theory

• IID (Independent and identically distributed) Sources

$$
X^{n} = (X^{t_1}, X^{t_2}, X^{t_3}, X^{t_4}, \dots, X^{t_n})
$$

 ${X^{t_i}}_{i\leq n}$ are mutaully independent

$$
P_{X^{t_j}} = P_{X^{t_1}} = P_X \quad \forall j \le n
$$

$$
H(X^{n}) = H(X^{t_1}) + H(X^{t_2}) + \dots + H(X^{t_n}) = nH(X)
$$

$$
H(X^{t_1})\left(H(X^{t_2})\right) \quad \cdots \quad H(X^{t_n})
$$

- Consider two parties Alice and Bob.
- Assume that Alice can send signals to Bob, over a *noisy medium*.
- We call such noisy means of signal transmission, "Channels."
- A discrete memoryless channel (DMC) is denoted by

$$
W = (\mathcal{X}_1, P_{X_2|X_1}, \mathcal{X}_2)
$$

or in short $W=P_{X_2|X_1}.$

Multiterminal Channel Model

- \bullet Set of m terminals.
- \bullet E.g. $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$
- Eve has unlimited computation power
- An underlying noisy channel
- \bullet SKA for $A \subseteq M$
- E.g. $A = \{3, 4, 5, 6\}$
- Terminals 1 and 2 are helpers
- Terminals have access to a free and reliable public channel

Csiszár and Narayan, "Secrecy Capacities for Multiterminal Channel Models", IEEE Trans. Info. 2008.

∢ □ ▶ ∢ [⊖]

The Underlying Noisy Channel

Example: Single-Input Multi-output DMC

Csisz´ar and Narayan, "Secrecy Capacities for Multiterminal Channel Models", IEEE Trans. Info. 2008.

ィロ ▶ (何 ▶ (三 ▶ (三 ▶

Example: Multiaccess DMC

Csisz´ar and Narayan, "Secrecy Generation for Multiaccess Channel Models", IEEE Trans. Info. 2013.

ィロ ▶ (何 ▶ (三 ▶ (三 ▶

The SKA Protocol

重

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Definition: *K* is an
$$
(\epsilon, \sigma)
$$
-SK for $\mathcal{A} \subseteq \mathcal{M}$ if
\n
$$
\Pr\{K_j = K\} \ge 1 - \epsilon, \forall j \in \mathcal{A} \quad \text{(reliability)}
$$
\n
$$
\text{SD}((K, \mathbf{F}, Z); (U, \mathbf{F}, Z)) \le \sigma \quad \text{(secrecy)}
$$
\nwhere
$$
\text{SD}(X; Y) = \frac{1}{2} \sum_{w \in \mathcal{W}} |P_X(w) - P_Y(w)|.
$$

Definition - Key Capacity

Definition:

Let
$$
K \in \mathcal{K}
$$
 be an (ϵ_n, σ_n) –SK with $\lim_{n \to \infty} \epsilon_n = \lim_{n \to \infty} \sigma_n = 0$.

Then, $\lim_{n\to\infty}\frac{1}{n}\log|\mathcal{K}|=R$ is an achievable **SK rate**.

The largest achievable key rate is called key capacity.

4 **D F**

네 로 H 네 로 H

• Adversarial model (Csiszár & Narayan)

Eve has unbounded computational power, listens to the public communication, F, and has access to random variable Z

 M is the set of all terminals.

 A is the target subset.

 \mathcal{A}^c is the set of helper terminals.

 D is the set of compromised terminals.

Csiszár and Narayan, "Secrecy Capacities for Multiple Terminals," IEEE Trans. Inf. Theory, Dec. 2004.

K ロ X K 個 X X R X X X R X X R B

 299

Past Results

$$
X_1 - \boxed{W} - X_2
$$

Theorem - Two-Party Secret Key (SK) Capacity [AC'93]

The SK capacity for two terminals is $C_{SK}(W) = \max_{P_{X_1}} I(X_1; X_2).$

SKA Protocol

- Alice sends X_1^n , Bob receives X_2^n
- Alice sends message F, Bob recovers X_1^n (using F and X_2^n)
- Both parties extract a key K from X_1^n where $\log |\mathcal{K}| \approx nI(X_1;X_2)$

Ahlswede and Csisz´ar, "Common randomness in information theory and cryptograp[hy.](#page-13-0) I,[" IE](#page-15-0)[E](#page-13-0)[E T](#page-14-0)[ra](#page-15-0)[ns. I](#page-0-0)[nf.](#page-44-0) [The](#page-0-0)[ory,](#page-44-0) [199](#page-0-0)[3.](#page-44-0)

イロト イ押ト イヨト イヨ

Finding a general expression for WSK capacity, even for the case of two terminals $(|\mathcal{M}| = 2)$ is an open problem.

Past Results: Two-Party SKA

W

Theorem - Two-Party WSK Capacity [AC'93]

The two-party WSK capacity is bounded by

$$
C_{WSK}(P_{ZX_2|X_1}) \le \max_{P_{X_1}} I(X_1; X_2|Z),
$$

which is tight if $X_1 - X_2 - Z$ (degrade channels). Also, the noninteractive WSK capacity is

$$
C_{NI-WSK} = \max_{P_{X_1}} \{ I(X_1; X_2) - I(X_1; Z) \}.
$$

Ahlswede and Csiszár, "Common randomness in information theory and cryptography. I," IEEE Trans. Inf. Theory, 1993.

SK and PK capacities

 \rightarrow э. メイヨメ

 \sim

活

Past Results: Multiterminal SKA

Csiszár and Narayan, "Secrecy Capacities for Multiterminal Channel Models". IEEE Trans. Info. 2008.

∢ □ ▶ ∢ [⊖]

э

メイヨメ

Csiszár and Narayan, "Secrecy Capacities for Multiterminal Channel Models", IEEE Trans. Info. 2008.

Past Results: Multiterminal SKA

Csiszár and Narayan, "Secrecy Generation for Multiaccess Channel Models", IEEE Trans. Info. 2013.

∢ □ ▶ ∢ [⊖]

ミメスミメ

э

The multiaccess channel model

In [CN'13] upper and lower bounds for the SK and PK capacity of the multiaccess (multi-input multi-output) channel model were proved.

Csiszár and Narayan, "Secrecy Generation for Multiaccess Channel Models", IEEE Trans. Info. 2013.

제 ロ ▶ (御) | 제 활) | 제 활) | 기 활

 299

Our Results

Our results:

- **4** A new multiterminal channel model for SKA
- **2** General upper and lower bounds on SK and PK capacity
- **3** The noninteractive SK capacity
- ⁴ The noninteractive WSK capacity of Polytree-PIN

The Channel Model of Transceivers

Þ

Our Model

ă

イロト イ部 トイヨト イヨト

Transceivers Model: examples

4 **D F**

Þ

Transceivers Model: examples

Polytree-PIN

There exists a polytree $G = (\mathcal{M}, \mathcal{E})$ that defines the underlying noisy DMC as a pairwise independent network of point-to-point channels:

$$
W = P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}
$$

$$
= \prod_{e_{ij} \in \mathcal{E}} P_{Y_{ij}|T_{ji}}
$$

The Upper Bound

- Let $\mathcal{M}' = \{m+1, m+2, ..., 2m\}$ be the set of input terminals
- Let $\mathcal{M} = \{1, 2, \ldots, m\}$ be the set of output terminals
- For each $j \in \mathcal{M}$ let $X_j = (T_j, Y_j)$ and let \overline{W} be given as follows:

$$
\overline{W} = P_{X_{\mathcal{M}}|X_{\mathcal{M}'}}
$$
\n
$$
= P_{Y_{\mathcal{M}},T_{\mathcal{M}}|X_{\mathcal{M}'}}
$$
\n
$$
= P_{T_{\mathcal{M}}|X_{\mathcal{M}'}} \cdot P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}
$$
\n
$$
= (\prod_{j \in \mathcal{M}} P_{T_j|X_{j+m}}) \cdot W
$$
\n
$$
= (\prod_{j \in \mathcal{M}} \mathbb{1}(T_j = X_{j+m})) \cdot W
$$

Theorem - Upper Bound

For any given transceivers model $W = P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}$ we have

> $C_{SK}^{\mathcal{A}}(W) \leq C_{SK}^{\mathcal{A}}(\overline{W}),$ (1) $C_{PK}^{\mathcal{A}|\mathcal{D}}(W) \leq C_{PK}^{\mathcal{A}|\mathcal{D}}(\overline{W}).$ (2)

Proof Idea:

Let Π be an SKA protocol that achieves an SK K in W . The SKA protocol Π can also be used in \overline{W} to achieves the same SK K.

Recall: Source Model

- Correlated samples are observed
- Samples are IID with distribution $P_{X_{\mathcal{M}}^n} = (P_{X_{\mathcal{M}}})^n$
- The joint distribution P_{X_M} is known publicly
- \bullet Terminals use the public communication to establish the secret key K
- Largest achievable key rate is given by the source model key capacity

Recall: Source Model

Largest achievable key rate is given by the source model key capacity

Theorem - Source model key capacity [CN'04]

In a given source model P_{X_M} , the PK capacity is

$$
C_{PK}^{\mathcal{A}|\mathcal{D}}(P_{X_{\mathcal{M}}}) = H(P_{X_{\mathcal{M}}}|P_{X_{\mathcal{D}}}) - R_{CO}^{\mathcal{A}|\mathcal{D}}(P_{X_{\mathcal{M}}}),
$$

where $R_{CO}^{\mathcal{A}|\mathcal{D}}(P_{X_{\mathcal{M}}})=\min_{R_{\mathcal{D}^c}\in \mathcal{R}_{CO}}\mathsf{sum}(R_{\mathcal{D}^c})$ and $\mathcal{R}_{CO} = \{R_{\mathcal{D}^c} | \mathsf{sum}(R_{\mathcal{B}}) \geq H(P_{X_{\mathcal{M}}}|P_{X_{\mathcal{B}^c}}), \; \forall \mathcal{B} \subset \mathcal{D}^c, \mathcal{A} \nsubseteq \mathcal{B} \}$.

[CN'04] Csiszár and Narayan, "Secrecy Capacities for Multiple Terminals," IEEE Trans. Inf. Theory, Dec. 2004.

Theorem - Lower Bound

For any given transceivers model W , and for any random variable V satisfying $P_{V,T_{\mathcal{M}}} = P_V \Pi_{j \in \mathcal{M}} P_{T_j|V}$, we have

$$
C_{SK}^{\mathcal{A}}(W) \geq C_{SK}^{\mathcal{A}|\{0\}}(P_{X_{\mathcal{M}^{\prime}}}),
$$

and

$$
C_{PK}^{\mathcal{A}|\mathcal{D}}(W) \ge C_{PK}^{\mathcal{A}|\mathcal{D}'}(P_{X_{\mathcal{M}'}}),\qquad(4)
$$

where $P_{X_{\mathcal{M}'}} = P_{VT_{\mathcal{M}}} P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}$ denotes the associated source model with $m + 1$ terminals, $\mathcal{M}' = \{0, 1, \ldots, m\}$, where $\mathcal{D}' = \mathcal{D} \cup \{0\}$, and $X_0 = V$.

Proof Idea: Source Emulation

Let Π be a source model SKA protocol that achieves the source model key capacity of $P_{X_{\mathcal{M}^{\prime}}}.$ We emulate (realize) $(P_{X_{\mathcal{M}'}})^n$, and use protocol Π to achieve a secret key $K \in \mathcal{K}$ such that, the key rate, $\frac{1}{n} \log |\mathcal{K}|$, approaches the source model capacity of P_{X_M} as $n \to \infty$.

Definition - The Noninteractive Capacity

Consider the following limitations

(a) Noninteractive Communication. Only after all symbol transmissions over the DMC, terminals each send a single message over the public channel in one round. In this case, $\mathbf{F} = \mathbf{F}^n = (F_1, \dots, F_m)$, where F_i denotes the public message of terminal j which is only a function of X_j^n (not other messages).

(b) Independent Inputs. Terminals are locally controlling their input variables, and the input variables are independent, i.e., $P_{T_{\mathcal{M}}} = \Pi_{j \in \mathcal{M}} P_{T_j}.$

The noninteractive secret key capacity, is defined as the largest achievable key rate of all SKA protocols satisfying (a) and (b), above; and is denoted by $C_{NI-SK}^{\mathcal{A}}(P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}).$

イロト イ押 トイヨ トイヨト

Definition - The Noninteractive Capacity

Consider the following limitations

(a) Noninteractive Communication.

(b) Independent Inputs.

$$
P_{T_{\mathcal{M}}} = \Pi_{j \in \mathcal{M}} P_{T_j}.
$$

The noninteractive secret key capacity, is defined as the largest achievable key rate of all SKA protocols satisfying (a) and (b), above; and is denoted by $C_{NI-SK}^{\mathcal{A}}(P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}).$

Theorem - Noninteractive capacity

Given any transceivers model $W = P_{Y_M|T_M}$, we have

$$
C_{NI-SK}^{\mathcal{A}}(W) = \max_{P_{T_{\mathcal{M}}}} C_{SK}^{\mathcal{A}}(P_{T_{\mathcal{M}}}P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}).
$$
\n(5)

Proof Idea:

Converse: By our upper bound, the capacity of W is upper bounded by the capacity of an associated multiaccess model. We, then, use the upper bound given in [CN'13] for multiaccess models, and simplify it to RHS of Eq.(5) using the noninteractivity assumptions (a) and (b).

Achievability: Use the source emulation approach with $V = constant$.

Csiszár and Narayan, "Secrecy Generation for Multiaccess Channel Models", IEEE [Tran](#page-36-0)s[. In](#page-38-0)[fo](#page-36-0)[. 20](#page-37-0)[1](#page-38-0)[3.](#page-0-0)

Polytree-PIN

There exists a polytree $G = (\mathcal{M}, \mathcal{E})$ that defines the underlying noisy DMC as:

$$
W = P_{Y_{\mathcal{M}}|T_{\mathcal{M}}}
$$

$$
= \prod_{e_{ij} \in \mathcal{E}} P_{Y_{ij}|T_{ji}}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Corollary - Noninteractive Capacity of Polytree-PIN

Given any Polytree-PIN model W, we have

$$
C_{NI-SK}^{\mathcal{A}}(W) = \max_{P_{T_{\mathcal{M}}}} \min_{\substack{i,j \in \mathcal{M} \\ \text{s.t. } e_{ij} \in \mathcal{E}}} I(T_{ij}; Y_{ji}).
$$
 (6)

Wiretapped Polytree-PIN

There exists a polytree $G = (\mathcal{M}, \mathcal{E})$ that defines the underlying noisy DMC as:

$$
W = P_{ZY_{\mathcal{M}}|T_{\mathcal{M}}}
$$

=
$$
\prod_{e_{ij} \in \mathcal{E}} P_{Y_{ij}|T_{ji}} P_{Z_{ij}|Y_{ji}}
$$

イロト イ御 トイミト イミト

Theorem - Noninteractive WSK Capacity of Polytree-PIN

Given any Wiretapped Polytree-PIN model W , we have

$$
C_{NI-WSK}^{\mathcal{A}}(W) = \max_{P_{T_{\mathcal{M}}}} \min_{\substack{i,j \in \mathcal{M} \\ \text{s.t. } e_{ij} \in \mathcal{E}}} I(T_{ij}; Y_{ji}|Z_{ij}).
$$
 (7)

Polytree-PIN Example 1: Single-input Model

Csiszár and Narayan, "Secrecy Capacities for Multiterminal Channel Models", IEEE Trans. Info. 2008.

4 **ED**

Polytree-PIN Example 2: Multiaccess Model

Csiszár and Narayan, "Secrecy Generation for Multiaccess Channel Models", IEEE Trans. Info. 2013.

4 **ED**

Polytree-PIN Example 3: Transceivers Model

4 **D F**

Þ

 \sim э **D**

- Finding tighter bounds for the SK and PK capacities
- Finding the WSK capacity of wiretapped Polytree-PIN
- Investigating interactive SKA protocols

Thanks for your attention!

(ロ) (個) (目) (目) (目) 目 のQC