AN INTRODUCTION TO UNIVERSALLY COMPOSABLE SECURITY FRAMEWORK OF **CANETTI**

SEPIDEH AVIZHEHUNIVERSITY OF CALGARY, AB, CANADA

Information Security Talk Series- 21,May,2021

Security of cryptographic tasks

Security properties: correctness, secrecy, fairness, integrity,…

Function f(x,y):

Commitment Signature Secret sharing Key exchange Oblivious transfer

…

Secure communication sessions Secure remote storage AuctionPrivate information retrieval Electronic voting Multi party computation

Security models

1) Game based security

- \Box Consider a challenger and adversary
- \Box Define the property as a randomized experiment
- \Box Calculate the success probability of adversary
- \Box Disadvantgaes:
	- \Box Each game covers one property of interest
	- **D** Do not guarantee security in the practice(real world)

EAV-security:

- Define a randomized exp't Priv $K_{\Delta \Pi}(n)$:
	- 1. A(1ⁿ) outputs m₀, m₁ \in {0,1}^{*} of equal length
	- 2. $k \leftarrow$ Gen(1ⁿ), $b \leftarrow \{0,1\}$, $c \leftarrow$ Enc_k(m_h)
	- 3. $b' \leftarrow A(c)$

Adversary A succeeds if $b = b'$, and we say the experiment evaluates to 1 in this case

2) Simulation based security (real-ideal world paradigm)

- \Box Standalone security
- \Box Universally composable security
- \Box Advantages of UC:
	- **D** Ensures security in practice
	- O Allows modular design in unpredictable environments

Real world

Ideal world

In this talk…

- □ Standalone security and its insufficiency
- □ UC components
- □ UC theorem
- n Example
	- \blacksquare Impossibility of UC security for commitment in plain model
	- **¤ Random oracle model**
	- **Q** UC secure commitment in random oracle model

Insufficiency of standalone security

Useful examples from [1]

5

 \Box Example 1: a simple insecure protocol combination

[1] Ran Canetti, "How To Obtain and Assert Composable Security", PPT

Insufficiency of Standalone security [1]

6

 \Box Example 2 (more realistic scenario):

Two protocols use joint secret information in an "uncoordinated way".

E Key exchange and secure communication over untrusted network

Authenticated key exchange [1]

[based on Needham-Schroeder-Lowe,78+95]

 \Box Encryption-based protocol

7

Compose the key exchange with Encryption [1]

 \Box The encryption protocol, Enc, is one-time-pad \Box The message, M, is either "buy" or "sell":

8

Attack on the composed protocol [1]

Note: if M="sell" then $C'=(N_B + "sell") + "sell" = N_B$. Else C' != N_B. B accepts if and only if M="sell"

Insufficiency of Standalone security[1]

10

\Box Example 3: Malleability of Commitment

Secrecy (hiding): Nothing is leaked about x Binding: C can only be opened to a single value x

Auction protocol (based on commitments) [1]

 \Box **Phase 1:** Each bidder publishes a commitment to its bid.

11

 Phase 2:Bidders open their commitments.

Attack on auction protocol [1]

- **12**
- \Box **Phase 1:** Each bidder publishes a commitment to its bid.
	- **Phase 2:** Bidders open their commitments.

Insufficiency of standalone security [2]

- **13**
- \Box Example 4: Verifiable computation based on replication:
- computation is delegated to two parties, if they both reveal the same result, the result is accepted

Attack on verifiable computtaion [2]

 \Box In specific threat models and scenarios, correctness is not guaranteed

[2] Avizheh, S., Nabi, M., Safavi-Naini, R., & Venkateswarlu K, M. (2019, November). Verifiable Computation using Smart Contracts. In *Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop* (pp. 17-28), and a followup paper.

Universally Composable Security (UC) [3]

A closer look into simulation based security •Entities•Ideal functionality •Environment

15

[3] Canetti, R. (2001, October). Universally composable security: A new paradigm for cryptographic protocols. In *Proceedings 42nd IEEE Symposium on Foundations of Computer Science* (pp. 136-145). IEEE.

Simulation-based security

Real world

≈

Ideal world

 \Box Whatever can be achieved in the real world can also be achieved in the ideal world, therefore real world is as secure as ideal world

Entities

TM

 \Box a mathematical model of computation

 \blacksquare Tape, head, state register, table of instructions

ITM

- \Box ITM: has special tapes for communicationg with other ITMs
- \Box All entities are modeled as Interacive Turing Machines (ITM)

•Entities are dummy ITMs in ideal world

Ideal functionality

- **18**
- \Box An ideal functionality is an ITM
- \Box Ideal functionality is fully trusted
- \Box Captures the properties required by the scheme
- \Box It interacts with protocol parties and simulator
	- **Receives inputs from parties**
	- **Performs the task at hand**
	- **<u>E</u>** Interacts with Sim
	- **Returns the result to parties**

Ideal functionality for commitment

Commitment: ideal world

Fcom:

1) Upon receiving a value (commit, sid, A,B, x) from A, record x and send (Receipt,sid,A,B) to B.

(Commit,sid, A, B,x) $(Remark, A, B)$

Secrecy: B only knows A has made a commitment and it does not learn anything about x

Commitment: ideal world

Fcom: 2) Upon receiving a value (Open, sid,A,B) from A, send (Open, sid, A,B,x) to B and halt. If no such message exist halt.

(Open,sid, A, B) $(\text{Open}, \text{sid}, A, B, x)$

Binding: A cannot open C to a different value $\mathsf{x}'\neq\mathsf{x}$

Other ideal functionalities

Multi party computation

- 1. Receive (Input, sid,x) from party A
- 2. Receive (Input,sid,y) from party B
- 3. Compute z=F(x,y) \rightarrow Output (Result,sid,z)
- •Privacy of inputs
- •Correctness of result
- •Inputs are independent

Authenticated communication

1. Receive (Send, sid,B,m) from party A, do: If this is the first (Send...) input then record (B;m) and send (Sent,sid,A,B,m) to the adversary; else do nothing.

When receiving (ok) from the adversary, output (Sent,sid,A,B,m) to B and halt.

- •Non-transferable authentication
- •No secrecy for message and parties' identities

Environment

- \Box An ITM which provides input to parties and receive outputs from them
- \Box Captures everything that is external to the protocol of interest
- \Box In UC environment interact with adversary during the protocol

Universal composition theorem

26

Protocol $ρ^{\pi}$ emulates protocol ρ.

What is obtained?

- 1. Decompose the protocol to smaller modules
- 2. For each subroutines, formalize the specifications of the protocol using ideal functionality F in the presence of simulator Sim
- 3. Replace subroutines with ideal functionalities (hybrid world)
- 4. Build the ideal model, and show that Sim is able to simulate the protocol transcript

28An example

Commitment scheme•Impossibility results [4] •UC secure commitment with set up assumption •How simulation is done

[4] Canetti, R., & Fischlin, M. (2001, August). Universally composable commitments. In *Annual International Cryptology Conference* (pp. 19-40). Springer, Berlin, Heidelberg.

Example: Impossibility of UC secure commitment scheme in plain model [4]

29

 \Box Real world

Random oracle functionality [5]

Random oracle:

•For any message outputs a random value chosen from Uniform distribution

•For each message there is a single random value (collision-resistance) •It is not possible to find m from h (pre-image resistance)

Functionality \mathcal{F}_{RO}

 $\mathcal{F}_{\rm RO}$ proceeds as follows, running on security parameter k, with parties P_1, \ldots, P_n and an adversary S .

- 1. $\mathcal{F}_{\rm RO}$ keeps a list L (which is initially empty) of pairs of bitstrings.
- 2. Upon receiving a value (sid,m) (with $m \in \{0,1\}^*$) from some party P_i or from S , do:
	- If there is a pair (m, \tilde{h}) for some $\tilde{h} \in \{0,1\}^k$ in the list L, set $h := \tilde{h}$.
	- If there is no such pair, choose uniformly $h \in \{0,1\}^k$ and store the pair (m, h) in L.

Once h is set, reply to the activating machine (i.e., either P_i or S) with $(sid, h).$

[5] Hofheinz, D., & Müller-Quade, J. (2004, February). Universally composable commitments using random oracles. In *Theory of Cryptography Conference* (pp. 58-76). Springer, Berlin, Heidelberg.

UC secure commitment in RO model

(Extractability) [6]

[6] Dziembowski, S., Eckey, L., & Faust, S. (2018, October). Fairswap: How to fairly exchange digital goods. *ACM CCS* (pp. 967-984).

UC secure commitment in RO model (Simulatibility)

UC secure commitment in RO model (Simulatibility)

Concluding remarks

- \Box Standalone security is not sufficient in practice
- \Box UC security ensures that a protocol maintains its security in an unpredictable environment
- \Box There are variants of UC security:
	- **<u>n</u> JUC: Joint state UC framework**
	- **GUC** generalized UC framework
	- **Q** UC with non-monolithic adversaries
	- …
- \Box There are lots of impossibility results

Thank you!

