A block-chain based approach to Resource Sharing in Smart Neighbourhoods

Muni Venkateswarlu Kumaramangalam 31 Jan 2020

What is a LEDGER?

- What is a Ledger?
 - Record of activities
 - Financial, legal, physical or electronic
 - Recent call history
 - Financial transactions
- Centralized ledger
 - Controlled by an authority
 - Single point of failure
 - Accidental or intentional

#	Action	Transaction amount
1001	Debit	100\$
1002	Credit	200\$
		Ť

Distributed Ledger

Shared ledger

- across a network of multiple sites, geographies or institutions
- no central administrator or centralized data storage
- Immutable
- Participants can have their own identical copy of the ledger
 - May have a shard of the ledger
- Driven by cryptography
 - Security, accuracy, privacy

Fill in the answers

Fill in the answers : Distributed Ledger

5r1t9 A = 100, B = 200, C = A + B = 300 8s3s9

What is a Blockchain?

Distributed Ledger Technology (DLT)

- technological infrastructure and protocols to access, validation, and updating records across multiple entities or locations
- Underlying DLT is blockchain
 - Distributed & P2P network
 - Decentralized trust
 - Immutable
 - Anonymity
- How does a BLOCK look like?
 - Bitcoin block structure

Blockchain

Blockchain

Blockchain

Adding a new block

Consensus

- To add a new block to the blockchain, all participating nodes must come to a common agreement (called *consensus*)
- Major Consensus models:
 - Proof of Work (PoW)
 - Proof of Stake (PoS)
 - Round Robin
 - RAFT
 - Practical byzantine fault tolerance (PBFT)

Consensus Protocol

Picture source: M. Raikwar, D. Gligoroski, K. Kralevska, "SoK of Used Cryptography in Blockchain"

Smart Contracts

- Executable code stored in a blockchain
- Distributed execution
- Verify and enforce negotiations
- Third-party
- Transparent

Seller Organization ORG1	car contract:	Buyer Organization ORG2
<pre>application: seller = ORG1; buyer = ORG2; transfor(CAP1 _ collor _ buyer);</pre>	<pre>query(car): get(car); return car; transfer(car, buyer, seller): get(car); car.owner = buyer; put(car);</pre>	<pre>application: seller = ORG2; buyer = ORG1; transfor(CAR2, collor, buyer);</pre>
	<pre>return car; update(car, properties): get(car); car.colour = properties.colour; put(car); return car;</pre>	

Types of Blockchain

Permission-less blockchain (Public)

- Any one can be a participant
- E.g., Bitcoin, Ethereum
- Permissioned blockchain (Private)
 - Only invited can become a participant
 - Maintains an access control layer
 - E.g., Hyperledger Fabric, Corda

Blockchain Applications

- Major industries using blockchain:
 - Banking/Finance
 - Real state
 - Insurance
 - Healthcare
 - Legal system
- We focus on resource sharing in smart neighborhood

Smart Home & Neighborhood

Traditional Resource Sharing

- Issues in a centralized system
 - TA must be trusted
 - TA learns all interactions
 - High burden with conflicting tasks
 - Single point of failure

Goal

Simulating TA based on DL system

System Model

Infrastructure

- Enrollment service (EnS)
- Attribute Authority Service (AAS)
- Consensus nodes
- Smart neighborhood
- Attribute based access control
- Smart contracts
 - Register Contract (RC)
 - Adjudicator Contract (ADJ)
 - Access Control Contract (ACC)
 - Attribute Repository Contract (ARC)

Securing access using N-Chain

Goals and Assumptions

Security goals

- Access to resources will be provided only to requests that satisfy the access policy of the resource, and
 - Outsiders should not be able to send a request to access the resources,
 - The requesters who are cheating should be detected, and
 - The requester who has the required attributes end up with access granted
- Transactions do not leak more information compared to what is publicly available on the blockchain
 - Privacy (future work)

Trust assumptions

- Edge-Hubs are tamper-proof
- Smart home user maybe malicious
- C-Nodes and other authorities are honest but curious
- What is stored (N-chain)
 - Resource and user information
 - Access control policies
 - Authenticated supplementary info
 - Misbehavior handling and penalties

Proof of concept implementation

Truffle

- Development environment
- Testing framework EVM & JVM
- Ganache
 - Personal blockchain for Ethereum and Corda development
 - Deploy contracts
 - Develop applications
 - Run tests and understand contract functionalities
 - Runs as a desktop application and as a command-line tool

Setup

- Simulated a neighborhood of 5 smart homes each equipped with an EdgeHub
- Register using EnS (RC)
- AAS certifies the resource and EdgeHub attributes
- Access control policies (ACC)
- Misbehavior handling and penalties (ADJ)

Adding a policy

truffle(ganache) > accInstance1.policyAdd("Movies","MI1","allow",1000,20) tx: '0x3fca4ef0539dTa87e88da401ace0d48da19014e0ao07e90T598ce021985bc359', receipt: { transactionHash: '0x3fca4ef0539dfa87e88da401ace0d48da19014e0a607e90f598ce021985bc359', transactionIndex: 0, blockHash: '0x425ea77042ca997724ea2afbfa86142ab8ebaf9d00026680f598120ffd02601e', blockNumber: 11. from: '0x9513c89a8e9090268d65b8f8a302ca7473db9163'. to: '0x177328daa09510f765318f4c6163166f925d9a2a'. gasUsed: 128965. cumulativeGasUsed: 128965, contractAddress: null, logs: [], status: true,

v: '0x1c',

r: '0x34f7aa0274c299c45009697f9561ad40ee246cc6e5d6e322f991093f81e25421',

s: '0x7b646c1d90b6e11223702ae8bea5ff761403afa36ca9593e5637ceed20cc17f9',

rawLogs: [] },
logs: [] }

Registering a resource

truffle(ganache)> results1.logs[0]	
truffle(ganache)> rcInst.registerResource("Movie_index",'0x9513C89A8e9	090268D65B8f8a302cA747 <u>3DB9163</u>
','0x177328daa09510F705518F4C0103100F925D9A2A', accesscontrol:[index,C	urrent_time,E_SARC_address]")
{ tx: '0xb01a7e41e8fb68713431ca34aef58f88ad2f5187f514f013b692479fd4d4c	d05',
receipt:	
<pre>{ transactionHash: '0xb01a7e41e8fb68713431ca34aef58f88ad2f5187f514f</pre>	013b692479fd4d4cd05',
transactionIndex: 0,	
blockHash: '0x24a6228f5356d2f2ea3e83343b84bec49a9eaf1ffa51198db53	370adf178c97f',
blockNumber: 21,	
from: '0x9513c89a8e9090268d65b8f8a302ca7473db9163',	
to: '0x3522bb4ff843a04c9ddfcc1433e33aab185d894c',	
gasUsed: 56762,	
cumulativeGasUsed: 56762,	
contractAddress: null ,	
logs: [],	
status: true,	
logsBloom: '0x00000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	

- v: '0x1c',
- r: '0xdff4c278936c362f0ca2f055de8e0015a0969dc2c64d2c42b2ca7c3d5d9476cd',
- s: '0x2921a56570206111ee206b82d6c52ea3eff5c9a410b59db07cffe02c3bc8ec4',
- rawLogs: [] },
 logs: [] }

Access Control Results

30

```
truffle(ganache)> let result = await accInst.accessControl("Movie index",2042,'0x51008F2
D0147c1c4321Fa74D55bc8D733163EEA0',{from:accounts[1]})
undefined
truffle(ganache)> result.logs[0]
{ logIndex: 0,
  transactionIndex: 0,
  transactionHash: '0xa341d7a03c6209c715c36d99c4683f673e727ff6827cf9d4eff855a97504eb2b'.
  blockHash: '0x5eaeadfd0355db8e44880793b985890e90263246711eca8e31da57bf62102174',
  blockNumber: 22.
  address: '0x177328daa09510F765318F4C6163166F925D9A2A',
  type: 'mined'.
  id: 'log 6ab17d96'.
  event: 'ReturnAccessResult',
  args:
  Result {
     '0': '0x532Dded741Be2897aE4B79929B3b7b3F204c6Dd4'.
     '1': 'Access authorized!',
     '2': true.
     '3': <BN: 7fa>.
     '4': <BN: 0>.
     length : 5,
     from: '0x532Dded741Be2897aE4B79929B3b7b3F204c6Dd4'.
     errmsg: Access authorized!
     result: true,
     time: <BN: 7fa>,
     penalty: <BN: 0> } }
```

Results

truffle(ganache)> accInstance2.displayResults()
'Access is Granted after checking the ADULT conditions!'

truffle(ganache)> accInstance2.displayResults()
'Resource requester is NOT an ADULT and the subsequent requests are blocked!'

truffle(ganache)> accInstance2.displayResults()
'Misbehavior detected!'

truffle(ganache)> accInstance2.displayResults()
'Requests are blocked!'

Corda

- Corda network model
 - Distributed Ledger Technology
 - No party will have everything
 - Not completely trustless
 - Not fully decentralized
 - Permissioned and p2p
 - Communication is TLS encrypted
 - Notary pool
 - Validity consensus
 - Uniqueness consensus
 - Network map service
 - Local vault

UNIVERSITY OF

CALGARY

Proof of Concept Implementation using Corda

Infrastructure entities

- ISPs and Notary pool
 - Validity consensus
 - Uniqueness consensus
- Event handling
- Storage service
- Network map service (NMS)
- Attribute authorization service (AAS)
- Smart contracts
 - ARC
 - ACC
 - ADJ

