
Sabre: A speedier and scalable Riposte

Adithya Vadapalli
joint work with

Kyle Storrier and Ryan Henry

Indiana University and University of Calgary

21st August 2020
University of Calgary



Riposte, Oakland 2017

Goal
The goal of riposte is to do anonymous broadcasting.



A Simple Construction

Goal

1. Client wants to write 1 into row l of the database.

2. Servers hold shares of an L-bit string (a database with 1-bit
messages)

1. Client generates a random string r (length L) and sends it to
A.

2. Client sends to r ⊕ el to B.

3. The servers XORs, the received string with its share of the
database.



Riposte, Oakland 2017

g
serverA

g
serverB

g
client

~r

~r ⊕ ~el



Riposte, Oakland 2017

Problem
The main problem with the simple approach is the communication
cost.

DPFs
A rough one-line definition of DPFs. They are a way to share a
standard basis vector among two parties by sending them short
PRG seeds.



Distributed Point Function, CCS 2016, Eurocrypt 2014

Definition
The point function at l over GF(2λ) is the function
P : GF(2λ)→ GF(2λ) defined via

P(j) =

{
1 if j = l , and

0 otherwise.

Definition
A distributed point function (DPF) is a pair of PPT algorithms
DPF = (Gen,Eval) where:

I Gen(x), with x ∈ {0, 1}∗, outputs a pair of keys (dpf0, dpf1).

I Eval(k , x ′) with k , x ′ ∈ {0, 1}∗, such that
Eval(dpf0, x

′)⊕ Eval(dpf1, x
′) = 1 if x ′ = x , otherwise 0.

I Evalfull evaluates the point function over the entire range.

I Evalfull(dpf0)⊕ Evalfull(dpf1) = ~el .



Riposte

g
serverA, Evalfull(dpf0)

g

serverB , Evalfull(dpf1)

g

client, (dpf0, dpf1)← Gen(l)

dpf 0

dpf
1

1. Client generates DPF keys and sends it to the servers.

2. Recall Evalfull(dpf0)⊕ Evalfull(dpf1) = ~el

3. Servers compute Evalfull(dpf0) and Evalfull(dpf1). Then they
XOR them to their share of the database.



Malicious Clients
Malicious clients can send bogus DPF seeds and corrupt the
database.

Protect against malicious clients

The two servers need to verify that DPF seeds are well-formed.

Zero Knowledge Proofs

Riposte use ZKPs to ensure that the DPFs are well-formed.



What are Zero-Knowledge Proofs?

Definition
The prover wants to prove the knowledge of a statement to the
verifier. The goal is to prove knowledge of the statement, with the
verifier learning nothing else.

Slightly more formally,

1. Let L be a language in NP and let R(x ,w) be the
corresponding NP-relation. (x is the public input, w is the
witness).

2. Prover proves the “knowledge” w , without revealing w itslef.



ZKPs for Riposte

Goal

1. The client which generates dpf keys dpf0 and dpf1.

2. Wants to convince the servers that,
Evalfull(dpf0)⊕ Evalfull(dpf1) is a standard basis vector.

3. Cannot reveal DPF keys dpf0 and dpf1.

Less efficient DPFs
Riposte uses O(

√
n) sized-DPFs; while the most efficient DPFs are

of size O(logn).

Our Contribution
Sabre uses the most efficient, O(logn)-sized DPFs.



MPC in the head, STOC 2007

Multi-Party Computation and Zero-Knowledge Proofs

MPC in the head is a paradigm that uses MPC to do ZKP.



What is Multi-Party Computation?

g
w1

g
w2

· · · g
wi

· · · g
wn

Definition
Parties P1, · · · ,Pn have private inputs w1,w2, · · · ,wn respectively.
They run a protocol among themselves to compute a function
f (w1, · · · ,wn).

t-privacy

The protocol is secure against a coaltion of atmost t corrupt
participants.



MPC in the head, STOC 07

g
w1

g
w2

· · · g
wi

· · · g
wn

Prover

1. f (x ,w1,w2, · · · ,wn) = R(x ,w1 ⊕ · · · ⊕ wn), where
(w1 ⊕ · · · ⊕ wn = w)

2. Prover simulates an MPC protocol in their head to compute
f (w1, · · · ,wn).

3. Prover commits to the transcript of the simulated 2-private
MPC protocol.



MPC in the head, STOC 07

g
w1

g
w2

· · · g
wi

· · · g
wn

Verifier

1. Verifier selects 2 parties at random and asks the verifier to
reveal the transcript.

2. Verifier checks that:

2.1 The transcripts are consistent with each other.
2.2 The output is correct.



MPC in the head, STOC 07

Soundness
Soundness error = 1/

(n
2

)
Soundness
Error probability can be reduced to 2−k by repeating the
experiment O(kn2) times.



Coming back to Sabre

Recall
The client wants to prove that dpf0 and dpf1 are valid DPF keys.

MPC

1. The client first creates shares of the keys, dpf0 and dpf1.

2. Then, it runs an MPC protocol in her head.



Point Functions, revisited
The point function at i over GF(2λ) is the function
P : GF(2λ)→ GF(2λ) defined via

P(j) =

{
1 if j = i , and

0 otherwise.



Properties

Type 0 nodes

1. it is a leaf with label “0”

2. it is a non-leaf and both of its children are of type 0;

Type 1 nodes

1. it is a leaf with label “1”

2. it is a non-leaf with exactly one type-1 child and one type-0
child.

Observation
If a tree is rooted at a 0-node, then all of its leafs are of type 0. If
a tree is rooted at a 1-node, then exactly one of its leafs is of type
1 and all others are of type 0.



Point Functions, revisited

1-path

A path from the root to the leaf comprising of 1-nodes is called a
1-path.

Key Observation

A function is a point function if and only if it has a 1-path.



Distributed Point Function

At Every level

1. P0 : computes L0‖R0 = PRG (seed0) + b · cw
2. P1 : computes L1‖R1 = PRG (seed1) + b · cw (b ∈ {0, 1})
3. Either L0 = L1 or R0 = R1



MPC for DPFs

Our MPC Protocol

I Proves the existence of a 1-path.

I Evaluates the 1-path.

I Proving the existence of a 1-path is equivalent to showing
that every level of DPF computation, exactly one half of the
PRG evaluation reconstructs to 0.



MPC for DPFs

g
P0; holds shares of DPF keys

g
P1; holds shares of DPF keys

g
P2; holds nothing; facilitates MPC

randomness
randomness

Things to know about our MPC protocol

1. P2 uses a PRG seeds to create randomness for P1 and P2.

2. P0 and P1 receive some randomness and communicate with
each other.

3. We use LowMC block cipher to implement the PRG.



MPC for DPFs

3 Party MPC

1. To implement our MPC we use 1-private 3-party MPC prtocol.

2. This means that, a single verifier can look at the transcript of
at most one party.

Multiple Verifiers

1. We solve this problem by introducing another verifier.

2. We have two versions, nameley 2 Verifier and 3 Verifiers.



2 Verifier MPC-in-the-head

Simulation

1. The simulator (the prover) runs K independent simulations of
the MPC protocol.

2. Mi [x , y ] ordered set of messages sent from Px to Py



Merkle-Tree Construction

Prover
The prover constructs a Merkle-tree by hashing each of the ordered
pairs of messages between the parties.

root

v0

H(M0[0, 1])H(M0[1, 0])H(M0[2, 1])H(M0[2, 0]) · · ·

vk

H(Mk [0, 1])H(Mk [1, 0])H(Mk [2, 1])H(Mk [2, 0])



Proof for Verifier 0 (other verifier is symmetrical)

I The root of the Merkle-tree (Let ci be i th bit of the root).
I For all i , such that ci = 1:

I Mi [0, 1], Mi [2, 0].
I H(Mi [2, 1]), H(Mi [2, 0]).

I For all i , such that ci = 0:
I H(Mi [0, 1]), H(Mi [1, 0]).
I seedi ; the seed used by P2 to generate the randomness.



Verifier 0, i th iteration (the other verifier is symmetrical)

Case A, ci = 0, Does P2 follows the protocol?

1. Gets: H(Mi [0, 1]), H(Mi [1, 0]), seedi

2. Computes: Mi [2, 0]; i.e. ordered pair of messages from
P2 → P0 and Mi [2, 1].

g
P0; holds shares of DPF keys

g
P1; holds shares of DPF keys

g
P2; holds nothing; facilitates MPC

randomness
randomness



Verifier 0, i th iteration (the other verifier is symmetrical)

Case B, ci = 1; Given that P2 follows the protocol do P0 and
P1 follow the protcol?

1. Gets: H(Mi [2, 1]), Mi [0, 1] and Mi [2, 0]; i.e. ordered pair of
messages from P0 → P1 and P2 → P0.

2. Computes: Mi [1, 0]; i.e. ordered pair of messages from
P1 → P0.

g
P0; holds shares of DPF keys

g
P1; holds shares of DPF keys

g
P2; holds nothing; facilitates MPC

randomness
randomness



Reconstructing the Merkle-tree

Verifier 0

I Verifier 0 has H(Mi [0, 1]) , H(Mi [1, 0]), H(Mi [2, 1]),
H(Mi [2, 0]) for all i .

I Thus, it can compute the root of the merkle-tree.

Intuition behind why this works

I For each iteration we either checking if P2 follows the protocol
or

I Given that P2 follows the protocol, do P0 and P1 follow the
protocol.

Since, the prover has no way to know what would be checked in a
particular iteration, the probability or cheating becomes low.



Experiments; 2 Verifier Sabre

size prooftime

230 0.64

228 0.57

226 0.43

224 0.37

222 0.22



Experiments; 2 Verifier Sabre



4-Party Sanity Check

2 Verifier Sabre
has to use LowMC block cipher in order to do the MPC.

AES Block Cipher

We present our 4-Party sanity check which can use the AES block
cipher.

Main Idea

1. We want to verify that the evaluation vector of the two DPFs
differ at exactly one location (i.e. they are shares of a
standard basis vector).

2. P3 sends a random vector ~R to P0 and P1.

3. Pb compute outb ← ⊕Evalfull(dpfb)[i ]=1
~R[i ] and send to P2.

4. P2 verifies that out0 ⊕ out1 ∈ ~R



4-Party Sanity Check

P2 P3

Output:

{
accept if ∃j , x0⊕x1

?
= ~R j ;

reject otherwise.

P0
x0 ←

(
⊕flags(seed0)[i ]=1

~R[π(i)]
)
⊕ γ

P1
x1 ←

(
⊕flags(seed1)[i ]=1

~R[π(i)]
)
⊕ γ

(π, γ)
(π, γ) ~R x1

~R

x0

Downsides

1. Probabilistic.

2. Requires 4 Parties.



Experiments; 4P Sanity Check


