Sabre: A speedier and scalable Riposte

Adithya Vadapalli joint work with Kyle Storrier and Ryan Henry

Indiana University and University of Calgary

 21^{st} August 2020 University of Calgary

Riposte, Oakland 2017

Goal

The goal of riposte is to do anonymous broadcasting.

A Simple Construction

Goal

- 1. Client wants to write 1 into row l of the database.
- 2. Servers hold shares of an L-bit string (a database with 1-bit messages)

- 1. Client generates a random string r (length L) and sends it to A.
- 2. Client sends to $r \oplus e_1$ to B.
- 3. The servers XORs, the received string with its share of the database.

Riposte, Oakland 2017

Riposte, Oakland 2017

Problem

The main problem with the simple approach is the communication cost.

DPFs

A rough one-line definition of DPFs. They are a way to share a standard basis vector among two parties by sending them short PRG seeds.

Distributed Point Function, CCS 2016, Eurocrypt 2014

Definition

The *point function* at *l* over $\mathsf{GF}(2^\lambda)$ is the function $P\colon \mathsf{GF}(2^\lambda)\to \mathsf{GF}(2^\lambda)$ defined via

$$
P(j) = \begin{cases} 1 & \text{if } j = l, \text{ and} \\ 0 & \text{otherwise.} \end{cases}
$$

Definition

A distributed point function (DPF) is a pair of PPT algorithms $DPF = (Gen,Eval)$ where:

- ► Gen(x), with $x \in \{0,1\}^*$, outputs a pair of keys (dpf₀, dpf₁).
- ► Eval (k, x') with $k, x' \in \{0, 1\}^*$, such that **Eval**(dpf₀, x') \oplus **Eval**(dpf₁, x') = 1 if x' = x, otherwise 0.

 \blacktriangleright Evalfull evaluates the point function over the entire range.

► Evalfull $(\text{dpf}_0) \oplus \text{Evalfull}(\text{dpf}_1) = \vec{e}_l$.

Riposte

- 1. Client generates DPF keys and sends it to the servers.
- $2.$ Recall Evalfull $(\mathsf{dpf}_0) \oplus \mathsf{Evalfull}(\mathsf{dpf}_1) = \vec{e_l}$
- 3. Servers compute Evalfull (dpf_0) and Evalfull (dpf_1) . Then they XOR them to their share of the database.

Malicious Clients

Malicious clients can send bogus DPF seeds and corrupt the database.

Protect against malicious clients

The two servers need to verify that DPF seeds are well-formed.

Zero Knowledge Proofs

Riposte use ZKPs to ensure that the DPFs are well-formed.

What are Zero-Knowledge Proofs?

Definition

The prover wants to prove the knowledge of a statement to the verifier. The goal is to prove knowledge of the statement, with the verifier learning nothing else.

Slightly more formally,

- 1. Let L be a language in NP and let $R(x, w)$ be the corresponding NP-relation. (x is the public input, w is the witness).
- 2. Prover proves the "knowledge" w , without revealing w itslef.

ZKPs for Riposte

Goal

- 1. The client which generates dpf keys dpf₀ and dpf₁.
- 2. Wants to convince the servers that, Evalfull $(\mathsf{dpf}_0) \oplus \mathsf{Evalfull}(\mathsf{dpf}_1)$ is a standard basis vector.
- 3. Cannot reveal DPF keys dpf $_0$ and dpf $_1$.

Less efficient DPFs $^{\prime}$ $^{\prime}$

Riposte uses $O($ $\overline{\textit{n}}$) sized-DPFs; while the most efficient DPFs are of size $O(logn)$.

Our Contribution

Sabre uses the most efficient, $O(logn)$ -sized DPFs.

Multi-Party Computation and Zero-Knowledge Proofs MPC in the head is a paradigm that uses MPC to do ZKP.

What is Multi-Party Computation?

Definition

Parties P_1, \dots, P_n have private inputs w_1, w_2, \dots, w_n respectively. They run a protocol among themselves to compute a function $f(w_1, \cdots, w_n)$.

t-privacy

The protocol is secure against a coaltion of atmost t corrupt participants.

Prover

- 1. $f(x, w_1, w_2, \dots, w_n) = R(x, w_1 \oplus \dots \oplus w_n)$, where $(w_1 \oplus \cdots \oplus w_n = w)$
- 2. Prover simulates an MPC protocol in their head to compute $f(w_1, \cdots, w_n)$.
- 3. Prover commits to the transcript of the simulated 2-private MPC protocol.

Verifier

- 1. Verifier selects 2 parties at random and asks the verifier to reveal the transcript.
- 2. Verifier checks that:
	- 2.1 The transcripts are consistent with each other.
	- 2.2 The output is correct.

Soundness Soundness error $=1/(n \choose 2)$ $\binom{n}{2}$

Soundness

Error probability can be reduced to 2^{-k} by repeating the experiment $O(kn^2)$ times.

Coming back to Sabre

Recall

The client wants to prove that ${\sf dpf}_0$ and ${\sf dpf}_1$ are valid DPF keys.

MPC

- 1. The client first creates shares of the keys, dpf_0 and dpf_1 .
- 2. Then, it runs an MPC protocol in her head.

Point Functions, revisited

The *point function* at i over $\mathsf{GF}(2^\lambda)$ is the function $P\colon \mathsf{GF}(2^\lambda)\to \mathsf{GF}(2^\lambda)$ defined via

Properties

Type 0 nodes

- 1. it is a leaf with label "0"
- 2. it is a non-leaf and both of its children are of type 0;

Type 1 nodes

- 1. it is a leaf with label "1"
- 2. it is a non-leaf with exactly one type-1 child and one type-0 child.

Observation

If a tree is rooted at a 0-node, then all of its leafs are of type 0. If a tree is rooted at a 1-node, then exactly one of its leafs is of type 1 and all others are of type 0.

Point Functions, revisited

1-path

A path from the root to the leaf comprising of 1-nodes is called a 1-path.

Key Observation

A function is a point function if and only if it has a 1-path.

Distributed Point Function

At Every level

- 1. P_0 : computes $L_0||R_0 = PRG(\text{seed}_0) + b \cdot \text{cw}$
- 2. P₁ : computes $L_1||R_1 = PRG(\text{seed}_1) + b \cdot cw$ ($b \in \{0, 1\}$)

3. Either
$$
L_0 = L_1
$$
 or $R_0 = R_1$

MPC for DPFs

Our MPC Protocol

- \blacktriangleright Proves the existence of a 1-path.
- \blacktriangleright Evaluates the 1-path.
- \triangleright Proving the existence of a 1-path is equivalent to showing that every level of DPF computation, exactly one half of the PRG evaluation reconstructs to 0.

MPC for DPFs

Things to know about our MPC protocol

- 1. P₂ uses a PRG seeds to create randomness for P_1 and P_2 .
- 2. P_0 and P_1 receive some randomness and communicate with each other.
- 3. We use LowMC block cipher to implement the PRG.

MPC for DPFs

3 Party MPC

- 1. To implement our MPC we use 1-private 3-party MPC prtocol.
- 2. This means that, a single verifier can look at the transcript of at most one party.

Multiple Verifiers

- 1. We solve this problem by introducing another verifier.
- 2. We have two versions, nameley 2 Verifier and 3 Verifiers.

Simulation

- 1. The simulator (the prover) runs K independent simulations of the MPC protocol.
- $2. \,\,$ $M_{i}[x,y]$ ordered set of messages sent from P_{x} to P_{y}

Merkle-Tree Construction

Prover

The prover constructs a Merkle-tree by hashing each of the ordered pairs of messages between the parties.

Proof for Verifier 0 (other verifier is symmetrical)

- The root of the Merkle-tree (Let c_i be i^{th} bit of the root).
- \blacktriangleright For all *i*, such that $c_i = 1$:
	- $\blacktriangleright M_i[0,1], M_i[2,0].$
	- \blacktriangleright $\mathcal{H}(M_i[2,1]), \mathcal{H}(M_i[2,0]).$
- For all *i*, such that $c_i = 0$:
	- \blacktriangleright $\mathcal{H}(M_i[0,1]), \mathcal{H}(M_i[1,0]).$
	- \triangleright seed; the seed used by P_2 to generate the randomness.

Verifier 0, *ith* iteration (the other verifier is symmetrical)

Case A, $c_i = 0$, Does P₂ follows the protocol?

- 1. Gets: $\mathcal{H}(M_i[0,1])$, $\mathcal{H}(M_i[1,0])$, seed,
- 2. **Computes:** $M_i[2,0]$; i.e. ordered pair of messages from $P_2 \rightarrow P_0$ and $M_i[2,1]$.

Verifier 0, *ith* iteration (the other verifier is symmetrical)

Case B, $c_i = 1$; Given that P₂ follows the protocol do P₀ and P_1 follow the protcol?

- 1. Gets: $\mathcal{H}(M_i[2,1])$, $M_i[0,1]$ and $M_i[2,0]$; i.e. ordered pair of messages from $P_0 \rightarrow P_1$ and $P_2 \rightarrow P_0$.
- 2. Computes: $M_i[1,0]$; i.e. ordered pair of messages from $P_1 \rightarrow P_0$.

Reconstructing the Merkle-tree

Verifier 0

- \blacktriangleright Verifier 0 has $\mathcal{H}(M_i[0,1])$, $\mathcal{H}(M_i[1,0])$, $\mathcal{H}(M_i[2,1])$, $\mathcal{H}(M_i[2,0])$ for all *i*.
- \blacktriangleright Thus, it can compute the root of the merkle-tree.

Intuition behind why this works

- \triangleright For each iteration we either checking if P_2 follows the protocol or
- \triangleright Given that P₂ follows the protocol, do P₀ and P₁ follow the protocol.

Since, the prover has no way to know what would be checked in a particular iteration, the probability or cheating becomes low.

Experiments; 2 Verifier Sabre

Experiments; 2 Verifier Sabre

4-Party Sanity Check

2 Verifier Sabre

has to use LowMC block cipher in order to do the MPC.

AES Block Cipher

We present our 4-Party sanity check which can use the AES block cipher.

Main Idea

- 1. We want to verify that the evaluation vector of the two DPFs differ at exactly one location (i.e. they are shares of a standard basis vector).
- 2. P₃ sends a random vector \vec{R} to P₀ and P₁.
- 3. P_b compute out ${}_b \leftarrow \oplus_{\mathsf{Evalfull}(\mathsf{dpf}_b)[i]=1} \vec{\mathsf{R}}[i]$ and send to $\mathsf{P}_2.$
- 4. P₂ verifies that out₀ ⊕ out₁ $\in \vec{R}$

4-Party Sanity Check

Downsides

- 1. Probabilistic.
- 2. Requires 4 Parties.

Experiments; 4P Sanity Check

